Let be a commutative ring with identity and an ideal of . is said to be - if for every element there is an idempotent such that is a unit and belongs to . A filter of ideals, say , of is Noetherian if for each there is a finitely generated ideal such that . We characterize -clean rings for the ideals , , , and , in terms of the frame of multiplicative Noetherian filters of ideals of , as well as in terms of more classical ring properties.
Soit une anneau commutatif unitaire et and idéal de . L’anneau est dit -propre si pour chaque élément il existe un idempotent tel que est une unité et que . Un filtre d’idéaux de est noetherien si pour tout , il existe un idéal finiment engendré tel que . Nous caractérisons les anneaux -propres pour les idéaux , et en termes du filtre multiplicatif noetherien des idéaux de ainsi que en termes de propriétés plus classiques de théorie des anneaux.
@article{AFST_2010_6_19_S1_101_0, author = {Wolf Iberkleid and Warren Wm. McGovern}, title = {Classes of {Commutative} {Clean} {Rings}}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {101--110}, publisher = {Universit\'e Paul Sabatier, Institut de Math\'ematiques}, address = {Toulouse}, volume = {Ser. 6, 19}, number = {S1}, year = {2010}, doi = {10.5802/afst.1277}, mrnumber = {2675723}, zbl = {1210.13007}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1277/} }
TY - JOUR AU - Wolf Iberkleid AU - Warren Wm. McGovern TI - Classes of Commutative Clean Rings JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2010 SP - 101 EP - 110 VL - 19 IS - S1 PB - Université Paul Sabatier, Institut de Mathématiques PP - Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1277/ DO - 10.5802/afst.1277 LA - en ID - AFST_2010_6_19_S1_101_0 ER -
%0 Journal Article %A Wolf Iberkleid %A Warren Wm. McGovern %T Classes of Commutative Clean Rings %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2010 %P 101-110 %V 19 %N S1 %I Université Paul Sabatier, Institut de Mathématiques %C Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1277/ %R 10.5802/afst.1277 %G en %F AFST_2010_6_19_S1_101_0
Wolf Iberkleid; Warren Wm. McGovern. Classes of Commutative Clean Rings. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 19 (2010) no. S1, pp. 101-110. doi : 10.5802/afst.1277. https://afst.centre-mersenne.org/articles/10.5802/afst.1277/
[1] Ahn, M.S. and Anderson, D.D. Weakly clean rings and almost clean rings. Rocky Mountain J. of Math. 36(3), 783-798 (2006). | MR | Zbl
[2] Banaschewski, B. Ring theory and point free topology. Top. Appl. 137, 21-37 (2004). | MR | Zbl
[3] Banaschewski, B. Gelfand and exchange rings: their spectra in pointfree topology. Arab. J. Sci. Eng. Sect. C Theme Issues. 25(2), 3-22 (2000). | MR
[4] Birkhoff G. Lattice Theory. Colloquium Publ. 25, Amer. Math Societ. Providence (1979). | MR | Zbl
[5] Huckaba, J.A. Commutative rings with zero divisors. Monographs and Textbooks in Pure and Applied Mathematics, 117, Marcel Dekker, Inc. New York (1988). | MR | Zbl
[6] Knox, M.L. and McGovern, W.W. Feebly projectable algebraic frames and multiplicative filters of ideals. Appl. Categ. Structures, to appear. | MR | Zbl
[7] McGovern, W. Wm. Neat Rings. J. Pure Appl. Alg. 205, 243-265 (2006). | MR | Zbl
[8] Storrer, J.J. Epimorphismen von kommutativen Ringen. Comment. Math. Helvetici 43,378-401 (1968). | MR | Zbl
Cited by Sources: