Classes of Commutative Clean Rings
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 19 (2010) no. S1, pp. 101-110.

Let A be a commutative ring with identity and I an ideal of A. A is said to be I-clean if for every element aA there is an idempotent e=e 2 A such that a-e is a unit and ae belongs to I. A filter of ideals, say , of A is Noetherian if for each I there is a finitely generated ideal J such that JI. We characterize I-clean rings for the ideals 0, n(A), J(A), and A, in terms of the frame of multiplicative Noetherian filters of ideals of A, as well as in terms of more classical ring properties.

Soit A une anneau commutatif unitaire et I and idéal de A. L’anneau A est dit I-propre si pour chaque élément aA il existe un idempotent e=e 2 A tel que a-e est une unité et que aeI. Un filtre d’idéaux de A est noetherien si pour tout I, il existe un idéal finiment engendré J tel que JI. Nous caractérisons les anneaux I-propres pour les idéaux 0 n(A), J(A) et A en termes du filtre multiplicatif noetherien des idéaux de A ainsi que en termes de propriétés plus classiques de théorie des anneaux.

@article{AFST_2010_6_19_S1_101_0,
     author = {Wolf Iberkleid and Warren Wm. McGovern},
     title = {Classes of {Commutative} {Clean} {Rings}},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {101--110},
     publisher = {Universit\'e Paul Sabatier, Institut de Math\'ematiques},
     address = {Toulouse},
     volume = {Ser. 6, 19},
     number = {S1},
     year = {2010},
     doi = {10.5802/afst.1277},
     mrnumber = {2675723},
     zbl = {1210.13007},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1277/}
}
TY  - JOUR
AU  - Wolf Iberkleid
AU  - Warren Wm. McGovern
TI  - Classes of Commutative Clean Rings
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2010
SP  - 101
EP  - 110
VL  - 19
IS  - S1
PB  - Université Paul Sabatier, Institut de Mathématiques
PP  - Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1277/
DO  - 10.5802/afst.1277
LA  - en
ID  - AFST_2010_6_19_S1_101_0
ER  - 
%0 Journal Article
%A Wolf Iberkleid
%A Warren Wm. McGovern
%T Classes of Commutative Clean Rings
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2010
%P 101-110
%V 19
%N S1
%I Université Paul Sabatier, Institut de Mathématiques
%C Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1277/
%R 10.5802/afst.1277
%G en
%F AFST_2010_6_19_S1_101_0
Wolf Iberkleid; Warren Wm. McGovern. Classes of Commutative Clean Rings. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 19 (2010) no. S1, pp. 101-110. doi : 10.5802/afst.1277. https://afst.centre-mersenne.org/articles/10.5802/afst.1277/

[1] Ahn, M.S. and Anderson, D.D. Weakly clean rings and almost clean rings. Rocky Mountain J. of Math. 36(3), 783-798 (2006). | MR | Zbl

[2] Banaschewski, B. Ring theory and point free topology. Top. Appl. 137, 21-37 (2004). | MR | Zbl

[3] Banaschewski, B. Gelfand and exchange rings: their spectra in pointfree topology. Arab. J. Sci. Eng. Sect. C Theme Issues. 25(2), 3-22 (2000). | MR

[4] Birkhoff G. Lattice Theory. Colloquium Publ. 25, Amer. Math Societ. Providence (1979). | MR | Zbl

[5] Huckaba, J.A. Commutative rings with zero divisors. Monographs and Textbooks in Pure and Applied Mathematics, 117, Marcel Dekker, Inc. New York (1988). | MR | Zbl

[6] Knox, M.L. and McGovern, W.W. Feebly projectable algebraic frames and multiplicative filters of ideals. Appl. Categ. Structures, to appear. | MR | Zbl

[7] McGovern, W. Wm. Neat Rings. J. Pure Appl. Alg. 205, 243-265 (2006). | MR | Zbl

[8] Storrer, J.J. Epimorphismen von kommutativen Ringen. Comment. Math. Helvetici 43,378-401 (1968). | MR | Zbl

Cited by Sources: