Given a representation of a local unitary group and another local unitary group , either the Theta correspondence provides a representation of or we set . If is fixed and varies in a Witt tower, a natural question is: for which is ? For given dimension there are exactly two isometry classes of unitary spaces that we denote . For let us denote the minimal of the same parity of such that , then we prove that where is the dimension of .
Étant donnée une représentation d’un groupe unitaire local et un autre groupe unitaire local , on sait que soit la correspondance Theta fournit une représentation de soit on pose . Si on fixe et on laisse varier dans une tour de Witt, une question naturelle est : pour quels a-t-on ? Pour chaque dimension il y a exactement deux classes d’équivalence d’espaces unitaires que nous dénotons . Pour , dénotons le plus petit de la parité de tel que , alors nous montrons que où est la dimension de .
@article{AFST_2011_6_20_1_167_0, author = {Z. Gong and L. Greni\'e}, title = {An inequality for local unitary {Theta} correspondence}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {167--202}, publisher = {Universit\'e Paul Sabatier, Institut de Math\'ematiques}, address = {Toulouse}, volume = {Ser. 6, 20}, number = {1}, year = {2011}, doi = {10.5802/afst.1289}, mrnumber = {2830396}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1289/} }
TY - JOUR AU - Z. Gong AU - L. Grenié TI - An inequality for local unitary Theta correspondence JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2011 SP - 167 EP - 202 VL - 20 IS - 1 PB - Université Paul Sabatier, Institut de Mathématiques PP - Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1289/ DO - 10.5802/afst.1289 LA - en ID - AFST_2011_6_20_1_167_0 ER -
%0 Journal Article %A Z. Gong %A L. Grenié %T An inequality for local unitary Theta correspondence %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2011 %P 167-202 %V 20 %N 1 %I Université Paul Sabatier, Institut de Mathématiques %C Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1289/ %R 10.5802/afst.1289 %G en %F AFST_2011_6_20_1_167_0
Z. Gong; L. Grenié. An inequality for local unitary Theta correspondence. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 20 (2011) no. 1, pp. 167-202. doi : 10.5802/afst.1289. https://afst.centre-mersenne.org/articles/10.5802/afst.1289/
[Har97] Harris (M.).— -functions and periods of polarized regular motives, Journal für die reine und angewandte Mathematik 483, p. 75-161 (1997). | MR | Zbl
[Har07] —–, Cohomological automorphic forms on unitary groups. II. Period relations and values of L-functions, Harmonic analysis, group representations, automorphic forms and invariant theory, Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., vol. 12, World Sci. Publ., Hackensack, NJ, p. 89-149 (2007). MR MR2401812 | MR
[HKS96] Harris (M.), Kudla (S. S.), and Sweet (W. J.).— Theta dichotomy for unitary groups, J. Amer. Math. Soc. 9, no. 4, p. 941-1004 (1996). MR MR1327161 (96m:11041) | MR | Zbl
[How] Howe (R.).— duality for stable reductive dual pairs, preprint.
[KR05] Kudla (S. S.) and Rallis (S.).— On first occurrence in the local theta correspondence, Automorphic representations, -functions and applications: progress and prospects, Ohio State Univ. Math. Res. Inst. Publ., vol. 11, de Gruyter, Berlin, p. 273-308 (2005). MR MR2192827 (2007d:22028) | MR | Zbl
[KS97] Kudla (S. S.) and Sweet Jr. (W. J.).— Degenerate principal series representations for , Israel J. Math. 98, p. 253-306 (1997). MR MR1459856 (98h:22021) | MR | Zbl
[Kud86] Kudla (S. S.).— On the local theta-correspondence, Invent. Math. 83, no. 2, p. 229-255 (1986). MR MR818351 (87e:22037) | MR | Zbl
[Kud94] —–, Splitting metaplectic covers of dual reductive pairs, Israel Journal of Mathematics 87, p. 361-401 (1994). | MR
[Kud96] —–, Notes on the local theta correspondence, Available on Kudla’s home page, http://www.math.utoronto.ca/ssk/castle.pdf, (1996).
[Li92] Li (J.S.).— Nonvanishing theorems for the cohomology of certain arithmetic quotients, J. Reine Angew. Math. 428, p. 177-217 (1992). MR MR1166512 (93e:11067) | MR | Zbl
[LR05] Lapid (E. M.) and Rallis (S.).— On the local factors of representations of classical groups, Automorphic representations, -functions and applications: progress and prospects, Ohio State Univ. Math. Res. Inst. Publ., vol. 11, de Gruyter, Berlin, p. 309-359 (2005). MR MR2192828 (2006j:11071) | MR | Zbl
[MVW87] Moeglin (C.), Vigneras (M.-F.) and Waldspurger (J.-L.).— Correspondance de Howe sur un corps -adique, Lecture Notes in Mathematics, vol. 1291, Springer-Verlag, Berlin, (1987). | MR
[Ral84] Rallis (S.).— On the Howe duality conjecture, Compositio Math. 51, no. 3, p. 333-399 (1984). MR MR743016 (85g:22034) | Numdam | MR | Zbl
[Rao93] Ranga Rao (R.).— On some explicit formulas in the theory of the Weil representation, Pacific J. Math. 157 (1993), p. 335-371. | MR | Zbl
[Wal90] Waldspurger (J.-L.).— Démonstration d’une conjecture de dualité de Howe dans le cas -adique, , Festscrift in honor of I. I. Piatetski-Shapiro on the occasion of his sixtieth birthday (Stephen Gelbart, Roger Howe, and P. Sarnak, eds.), Israel Mathematical Conference Proceedings, vol. 2, The Weizmann science press of Israel, 1990, p. 267-324. MR MR1159105 (93h:22035) | MR | Zbl
Cited by Sources: