We study points of density of sets of finite perimeter in infinite-dimensional Gaussian spaces and prove that, as in the finite-dimensional theory, the surface measure is concentrated on this class of points. Here density is formulated in terms of the pointwise behaviour of the Ornstein-Uhlembeck semigroup.
Dans cet article nous étudions la structure de l’ensemble des points avec densité pour les ensemble de périmètre fini dans un espace gaussien infini-dimensionnel. Nous démontrons que, comme dans le cas de dimension finie, la mesure de surface est concentrée sur cet ensemble de points. Ici, la définition de points avec densité est donnée en utilisant le comportement ponctuel du semigroupe de Ornstein-Uhlembeck.
@article{AFST_2011_6_20_2_407_0, author = {Luigi Ambrosio and Alessio Figalli}, title = {Surface measures and convergence of the {Ornstein-Uhlenbeck} semigroup in {Wiener} spaces}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {407--438}, publisher = {Universit\'e Paul Sabatier, Institut de Math\'ematiques}, address = {Toulouse}, volume = {Ser. 6, 20}, number = {2}, year = {2011}, doi = {10.5802/afst.1297}, mrnumber = {2847889}, zbl = {1228.60063}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1297/} }
TY - JOUR AU - Luigi Ambrosio AU - Alessio Figalli TI - Surface measures and convergence of the Ornstein-Uhlenbeck semigroup in Wiener spaces JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2011 SP - 407 EP - 438 VL - 20 IS - 2 PB - Université Paul Sabatier, Institut de Mathématiques PP - Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1297/ DO - 10.5802/afst.1297 LA - en ID - AFST_2011_6_20_2_407_0 ER -
%0 Journal Article %A Luigi Ambrosio %A Alessio Figalli %T Surface measures and convergence of the Ornstein-Uhlenbeck semigroup in Wiener spaces %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2011 %P 407-438 %V 20 %N 2 %I Université Paul Sabatier, Institut de Mathématiques %C Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1297/ %R 10.5802/afst.1297 %G en %F AFST_2011_6_20_2_407_0
Luigi Ambrosio; Alessio Figalli. Surface measures and convergence of the Ornstein-Uhlenbeck semigroup in Wiener spaces. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 20 (2011) no. 2, pp. 407-438. doi : 10.5802/afst.1297. https://afst.centre-mersenne.org/articles/10.5802/afst.1297/
[1] Airault (H.) and Malliavin (P.).— Intégration géométrique sur l’espace de Wiener, Bull. des Sciences Math., 112, p. 25-74 (1988). | MR | Zbl
[2] Ambrosio (L.), Fusco (N.) and Pallara (D.).— “Functions of bounded variation and free discontinuity problems", Oxford Mathematical Monographs (2000). | MR | Zbl
[3] Ambrosio (L.), Maniglia (S.), Miranda Jr. (M.) and Pallara (D.).— functions in abstract Wiener spaces, J. Funct. Anal., 258, p. 785-813 (2010). | MR | Zbl
[4] Ambrosio (L.), Da Prato (G.) and Pallara (D.).— functions in a Hilbert space with respect to a Gaussian measure, Preprint, (2009), http://cvgmt.sns.it/cgi/get.cgi/papers/ambdappal/
[5] Ambrosio (L.), Miranda (M.) and Pallara (D.).— Sets with finite perimeter in Wiener spaces, perimeter measure and boundary rectifiability, Discrete Contin. Dyn. Syst. Series A, 28, p. 591-606 (2010). | MR | Zbl
[6] Besicovitch (A.P.).— On the existence of subsets of finite measure of sets of infinite measure, Indag. Math., 14, p. 339-344 (1952). | MR | Zbl
[7] Bogachev (V.I.).— “Gaussian Measures", American Mathematical Society (1998). | MR | Zbl
[8] De Giorgi (E.).— Definizione ed espressione analitica del perimetro di un insieme, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Nat., 8, p. 390-393 (1953). | MR | Zbl
[9] De Giorgi (E.).— Su una teoria generale della misura -dimensionale in uno spazio ad dimensioni, Ann. Mat. Pura Appl., 4, p. 191-213 (1954). | MR | Zbl
[10] Federer (H.).— A note on the Gauss-Green theorem, Proc. Amer. Math. Soc., 9, p. 447-451 (1958). | MR | Zbl
[11] Federer (H.).— “Geometric measure theory", Springer (1969). | MR | Zbl
[12] Feyel (D.) and De la Pradelle (A.).— Hausdorff measures on the Wiener space, Potential Anal., 1, p. 177-189 (1992). | MR | Zbl
[13] Figalli (A.), Maggi (F.) and Pratelli (A.).— A mass transportation approach to quantitative isoperimetric inequalities, Invent. Math., 182, p. 167-211 (2010). | MR | Zbl
[14] Fukushima (M.).— On semimartingale characterization of functionals of symmetric Markov processes, Electron J. Probab., 4, p. 1-32 (1999). | Zbl
[15] Fukushima (M.).— functions and distorted Ornstein-Uhlenbeck processes over the abstract Wiener space, J. Funct. Anal., 174, p. 227-249 (2000). | MR | Zbl
[16] Fukushima (M.) and M. Hino (M.).— On the space of functions and a related stochastic calculus in infinite dimensions, J. Funct. Anal., 183, p. 245-268 (2001). | MR | Zbl
[17] Hino (M.).— Sets of finite perimeter and the Hausdorff-Gauss measure on the Wiener space, J. Funct. Anal., 258, p. 1656-1681 (2010). | MR | Zbl
[18] Ledoux (M.).— Isoperimetry and Gaussian analysis, in ”Lectures on Probability Theory and Statistics“, Saint Flour, 1994 Lecture Notes in Mathematics, 1648, Springer (1996). | MR | Zbl
[19] Ledoux (M.).— Semigroup proof of the isoperimetric inequaliy in Euclidean and Gaussian spaces, Bull. Sci. Math., 118, p. 485-510 (1994). | MR | Zbl
[20] Preiss (D.).— Gaussian measures and the density theorem, Comment. Math. Univ. Carolin., 22, p. 181-193 (1981). | MR | Zbl
[21] Stein (E.M.).— “Topics in Harmonic Analysis related to the Littlewood-Paley theory", Annals of Mathematics Studies 63, Princeton University Press (1970). | MR | Zbl
[22] Zambotti (L.).— Integration by parts formulae on convex sets of paths and applications to SPDEs with reflection, Probab. Theory Relat. Fields, 123, p. 579-600 (2002). | MR | Zbl
[23] Ziemer (W.P.).— “Weakly differentiable functions”, Graduate Texts in Mathematics, Springer (1989). | MR | Zbl
Cited by Sources: