Local-global compatibility for l=p, I
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 21 (2012) no. 1, pp. 57-92.

We prove the compatibility of the local and global Langlands correspondences at places dividing l for the l-adic Galois representations associated to regular algebraic conjugate self-dual cuspidal automorphic representations of GL n over an imaginary CM field, under the assumption that the automorphic representations have Iwahori-fixed vectors at places dividing l and have Shin-regular weight.

Nous prouvons la compatibilité entre les correspondances de Langlands locale et globale aux places divisant l pour les représentations galoisiennes l-adiques associèes à des représentations automorphes cuspidales algébriques et régulières de GL n sur un corps CM qui sont duales de leur conjuguée complexe, sous les hypothèses supplémentaires que ces représentations automorphes ont des vecteurs fixes par un sous-groupe d’Iwahori aux places divisant l et ont un poids régulier au sens de Shin.

DOI: 10.5802/afst.1329

Thomas Barnet-Lamb 1; Toby Gee 2; David Geraghty 3; Richard Taylor 4

1 Department of Mathematics, Brandeis University
2 Department of Mathematics, Northwestern University
3 Princeton University and Institute for Advanced Study
4 Department of Mathematics, Harvard University
@article{AFST_2012_6_21_1_57_0,
     author = {Thomas Barnet-Lamb and Toby Gee and David Geraghty and Richard Taylor},
     title = {Local-global compatibility for $l=p$, {I}},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {57--92},
     publisher = {Universit\'e Paul Sabatier, Institut de Math\'ematiques},
     address = {Toulouse},
     volume = {Ser. 6, 21},
     number = {1},
     year = {2012},
     doi = {10.5802/afst.1329},
     mrnumber = {2954105},
     zbl = {1259.11057},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1329/}
}
TY  - JOUR
AU  - Thomas Barnet-Lamb
AU  - Toby Gee
AU  - David Geraghty
AU  - Richard Taylor
TI  - Local-global compatibility for $l=p$, I
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2012
SP  - 57
EP  - 92
VL  - 21
IS  - 1
PB  - Université Paul Sabatier, Institut de Mathématiques
PP  - Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1329/
DO  - 10.5802/afst.1329
LA  - en
ID  - AFST_2012_6_21_1_57_0
ER  - 
%0 Journal Article
%A Thomas Barnet-Lamb
%A Toby Gee
%A David Geraghty
%A Richard Taylor
%T Local-global compatibility for $l=p$, I
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2012
%P 57-92
%V 21
%N 1
%I Université Paul Sabatier, Institut de Mathématiques
%C Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1329/
%R 10.5802/afst.1329
%G en
%F AFST_2012_6_21_1_57_0
Thomas Barnet-Lamb; Toby Gee; David Geraghty; Richard Taylor. Local-global compatibility for $l=p$, I. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 21 (2012) no. 1, pp. 57-92. doi : 10.5802/afst.1329. https://afst.centre-mersenne.org/articles/10.5802/afst.1329/

[1] Badulescu (A. I.).— Jacquet-Langlands et unitarisabilité, J. Inst. Math. Jussieu 6, no. 3, p. 349-379 (2007). | MR | Zbl

[2] Barnet-Lamb (T.), Gee (T.), Geraghty (D.), and Taylor (R.).— Local-global compatibility for l=p, II (2011).

[3] Barnet-Lamb (T.), Geraghty (D.), Harris (M.), and Taylor (R.).— A family of Calabi-Yau varieties and potential automorphy II, Publ. Res. Inst. Math. Sci. 47, no. 1, p. 29-98 (2011). | MR

[4] Caraiani (A.).— Local-global compatibility and the action of monodromy on nearby cycles, preprint arXiv:1010.2188 (2010).

[5] Clozel (L.).— Motifs et formes automorphes: applications du principe de fonctorialité, Automorphic forms, Shimura varieties, and L-functions, Vol. I (Ann Arbor, MI, 1988), Perspect. Math., vol. 10, Academic Press, Boston, MA, p. 77-159 (1990). | MR | Zbl

[6] Gillet (H.) and Messing (W.).— Cycle classes and Riemann-Roch for crystalline cohomology, Duke Math. J. 55, no. 3, p. 501-538 (1987). | MR | Zbl

[7] Harris (M.), Shepherd-Barron (N.), and Taylor (R.).— A family of Calabi-Yau varieties and potential automorphy, Ann. of Math. (2) 171, no. 2, p. 779-813 (2010). | MR

[8] Harris (M.) and Taylor (R.).— The geometry and cohomology of some simple Shimura varieties, Annals of Mathematics Studies, vol. 151, Princeton University Press, Princeton, NJ, With an appendix by Vladimir G. Berkovich (2001). | MR | Zbl

[9] Katz (N. M.) and Messing (W.).— Some consequences of the Riemann hypothesis for varieties over finite fields, Invent. Math. 23, p. 73-77 (1974). | MR | Zbl

[10] Kottwitz (R.).— Stable trace formula: elliptic singular terms, Math. Annalen 275, p. 365-399 (1986). | MR | Zbl

[11] Kottwitz (R. E.).— Points on some Shimura varieties over finite fields, J. Amer. Math. Soc. 5, no. 2, p. 373-444 (1992). | MR | Zbl

[12] Mantovan (E.).— On the cohomology of certain PEL-type Shimura varieties, Duke Math. J. 129, no. 3, p. 573-610 (2005). | MR | Zbl

[13] Sug Woo Shin.— Galois representations arising from some compact Shimura varieties, Annals of Math. (2) 173, no. 3, p. 1645-1741 (2011). | MR

[14] Taylor (R.) and Yoshida (T.).— Compatibility of local and global Langlands correspondences, J. Amer. Math. Soc. 20, no. 2, p. 467-493 (electronic) (2007). | MR | Zbl

Cited by Sources: