On The Notions of Mating
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 21 (2012) no. S5, pp. 839-876.

The different notions of matings of pairs of equal degree polynomials are introduced and are related to each other as well as known results on matings. The possible obstructions to matings are identified and related. Moreover the relations between the polynomials and their matings are discussed and proved. Finally holomorphic motion properties of slow-mating are proved.

Les différentes notions d’accouplement d’une paire de polynômes de même degré sont introduites et sont reliées les unes aux autres ainsi que les résultats connus concernant les accouplements. Les obstructions possibles à l’accouplement sont reliées entr’elles et identifiées. De plus, les relations entre les polynômes et leur accouplement sont discutées et prouvées. Enfin on démontre des propriétés de mouvement holomorphe de l’accouplement lent.

DOI: 10.5802/afst.1355

Carsten Lunde Petersen 1; Daniel Meyer 2

1 Institut for Natur, Systemer og Modeller Bygn 27.2, Roskilde Universitet, Universitetsvej 1, DK-4000 Roskilde, Denmark
2 Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
     author = {Carsten Lunde Petersen and Daniel Meyer},
     title = {On {The} {Notions} of {Mating}},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {839--876},
     publisher = {Universit\'e Paul Sabatier, Institut de Math\'ematiques},
     address = {Toulouse},
     volume = {Ser. 6, 21},
     number = {S5},
     year = {2012},
     doi = {10.5802/afst.1355},
     mrnumber = {3088260},
     zbl = {06167094},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1355/}
AU  - Carsten Lunde Petersen
AU  - Daniel Meyer
TI  - On The Notions of Mating
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2012
SP  - 839
EP  - 876
VL  - 21
IS  - S5
PB  - Université Paul Sabatier, Institut de Mathématiques
PP  - Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1355/
DO  - 10.5802/afst.1355
LA  - en
ID  - AFST_2012_6_21_S5_839_0
ER  - 
%0 Journal Article
%A Carsten Lunde Petersen
%A Daniel Meyer
%T On The Notions of Mating
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2012
%P 839-876
%V 21
%N S5
%I Université Paul Sabatier, Institut de Mathématiques
%C Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1355/
%R 10.5802/afst.1355
%G en
%F AFST_2012_6_21_S5_839_0
Carsten Lunde Petersen; Daniel Meyer. On The Notions of Mating. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 21 (2012) no. S5, pp. 839-876. doi : 10.5802/afst.1355. https://afst.centre-mersenne.org/articles/10.5802/afst.1355/

[1] Block (A.), Childers (D.), Levin (G.), Oversteegen (L.) and Schleicher (D.).— An Extended Fatou-Shishikura Inequality and Wandering Branch Continua for Polynomials. arXiv:10010953v2.

[2] Branner (B.) and Hubbard (J. H.).— The iteration of cubic polynomials : Part I. The global topology of parameter space. Acta Math. 160, p. 143-206 (1988). | MR | Zbl

[3] Carleson (L.) and Gamelin (T.).— Introduction to complex Dynamics. Springer (1993). | MR | Zbl

[4] Daverman (R. J.).— Decompositions of manifolds, volume 124 of Pure and Applied Mathematics. Academic Press Inc., Orlando, FL (1986). | MR | Zbl

[5] Douady (A.).— Descriptions of compact sets in . in Topological Methods in Modern Mathematics, edited by L.R.Goldberg and A.V.Phillips, Publish or Perish, INC (1993). | MR | Zbl

[6] Kiwi (J.).— Real laminations and the topological dynamics of complex polynomials. Advances in Math. 184, no. 2, p. 207-267 (2004). | MR | Zbl

[7] Meyer (D.).— Invariant Peano curves of expanding Thurston maps. to appear in Acta Math.

[8] Meyer (D.).— Expanding Thurston maps as quotients. Preprint.

[9] Meyer (D.).— Unmating of rational maps, sufficient criteria and examples. Preprint.

[10] Milnor (J.).— Dynamics in one complex variable, Princeton Univ. Press, Princeton, NJ, (2006). | MR | Zbl

[11] Milnor (J.).— Geometry and Dynamics of Quadratic Rational Maps. Exp. Math. 2, p. 37-83 (1993). | MR | Zbl

[12] Milnor (J.).— Pasting together Julia sets: A worked out example of mating. Exp. Math. 13(1), p. 55-92 (2004). | EuDML | MR | Zbl

[13] Moore (R. L.).— Concerning upper semi-continuous collections of continua, Trans. Amer. Math. Soc. Vol 27 No. 4, p. 416-428 (1925). | JFM | MR

[14] Petersen (C. L.) and Tan (L.).— Branner-Hubbard motions and attracting dynamics. in Dynamics on the Riemann Sphere, edited by P. G. Hjorth and C. L. Petersen, EMS Publishing House, p. 45-70 (2006). | MR | Zbl

[15] Rees (M.).— A partial description of parameter space of rational maps of degree two. I. Acta Math., 168(1-2), p. 11-87 (1992). | MR | Zbl

[16] Tan (L.).— Matings of quadratic polynomials. Ergodic Theory Dynam. Systems, 12(3), p. 589-620, (1992). | MR | Zbl

[17] Timorin (V.).— Moore’s theorem, preprint.

[18] Shishikuran (M.).— On a Theorem of M. Rees for matings of polynomials in The Mandelbrot Set, Theme and Variations, edited by Tan lei, Cambridge University Press, p. 289-305 (2000). | MR | Zbl

[19] Yampolsky (M.) and Zakeri (S.).— Mating Siegel quadratic polynomials, J. Amer. Math. Soc., 14(1), p. 25-78 (2001). | MR | Zbl

Cited by Sources: