logo AFST
The supports of higher bifurcation currents
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 22 (2013) no. 3, pp. 445-464.

Let (f λ ) λΛ be a holomorphic family of rational mappings of degree d on 1 (), with k marked critical points c 1 ,...,c k . To this data is associated a closed positive current T 1 T k of bidegree (k,k) on Λ, aiming to describe the simultaneous bifurcations of the marked critical points. In this note we show that the support of this current is accumulated by parameters at which c 1 ,...,c k eventually fall on repelling cycles. Together with results of Buff, Epstein and Gauthier, this leads to a complete characterization of Supp (T 1 T k ).

Soit (f λ ) λΛ une famille holomorphe d’applications rationnelles de degré d de 1 (), avec k points critiques marqués c 1 ,...,c k . À cette donnée est associée un courant T 1 T k de bidegré (k,k) sur l’espace des paramètres Λ, visant à décrire les bifurcations simultanées des points critiques marqués. Dans cette note nous montrons que le support de ce courant est accumulé par des paramètres en lesquels c 1 ,...,c k tombent sur des cycles répulsifs. En combinant ceci avec des résultats de Buff, Epstein et Gauthier, on obtient ainsi une caractérisation complète du support de T 1 T k .

Received:
Accepted:
Published online:
DOI: 10.5802/afst.1378
Romain Dujardin 1

1 CMLS, École Polytechnique, 91128 Palaiseau, France. Nouvelle adresse : LAMA, Université Paris Est Marne-la-Vallée, Cité Descartes 77454 Marne-la-Vallée cedex France.
@article{AFST_2013_6_22_3_445_0,
     author = {Romain Dujardin},
     title = {The supports of higher bifurcation currents},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {445--464},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 22},
     number = {3},
     year = {2013},
     doi = {10.5802/afst.1378},
     mrnumber = {3113022},
     zbl = {1314.37032},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1378/}
}
TY  - JOUR
TI  - The supports of higher bifurcation currents
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2013
DA  - 2013///
SP  - 445
EP  - 464
VL  - Ser. 6, 22
IS  - 3
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1378/
UR  - https://www.ams.org/mathscinet-getitem?mr=3113022
UR  - https://zbmath.org/?q=an%3A1314.37032
UR  - https://doi.org/10.5802/afst.1378
DO  - 10.5802/afst.1378
LA  - en
ID  - AFST_2013_6_22_3_445_0
ER  - 
%0 Journal Article
%T The supports of higher bifurcation currents
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2013
%P 445-464
%V Ser. 6, 22
%N 3
%I Université Paul Sabatier, Toulouse
%U https://doi.org/10.5802/afst.1378
%R 10.5802/afst.1378
%G en
%F AFST_2013_6_22_3_445_0
Romain Dujardin. The supports of higher bifurcation currents. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 22 (2013) no. 3, pp. 445-464. doi : 10.5802/afst.1378. https://afst.centre-mersenne.org/articles/10.5802/afst.1378/

[1] Bassanelli (G.), Berteloot (F.).— Bifurcation currents in holomorphic dynamics on P k , J. Reine Angew. Math. 608, p. 201-235 (2007). | MR: 2339474 | Zbl: 1136.37025

[2] Bassanelli (G.), Berteloot (F.).— Bifurcation currents and holomorphic motions in bifurcation loci, Math. Ann. 345, p. 1-23 (2009). | MR: 2520048 | Zbl: 1179.37067

[3] Bedford (E.), Lyubich (M.), Smillie (J.).— Polynomial diffeomorphisms of 2 . IV. The measure of maximal entropy and laminar currents, Invent. Math. 112, p. 77-125 (1993). | MR: 1207478 | Zbl: 0792.58034

[4] Berteloot (F.).— Bifurcation currents in one-dimensional holomorphic dynamics. C.I.M.E. Lecture notes (2011).

[5] Branner (B.), Hubbard (J. H.).— The iteration of cubic polynomials. I. The global topology of parameter space, Acta Math. 160, no. 3-4, p. 143-206 (1988). | MR: 945011 | Zbl: 0668.30008

[6] Buff (X.), Epstein (A.).— Bifurcation measure and postcritically finite rational maps, Complex dynamics, p. 491-512, A K Peters, Wellesley, MA (2009). | MR: 2508266 | Zbl: 1180.37056

[7] Buff (X.), Gauthier (Th.).— Perturbations of flexible Lattès maps. Preprint, arxiv:1111.5451.

[8] Chirka (E. M.).— Complex analytic sets, Mathematics and its Applications (Soviet Series), 46. Kluwer Academic Publishers Group, Dordrecht, (1989). | MR: 1111477 | Zbl: 0683.32002

[9] De Faria (E.), De Melo (W.).— Mathematical tools for one-dimensional dynamics. Cambridge Studies in Advanced Mathematics, 115, Cambridge University Press, Cambridge (2008). | MR: 2455301 | Zbl: 1154.30001

[10] DeMarco (L.).— Dynamics of rational maps: a current on the bifurcation locus, Math. Res. Lett. 8, no. 1-2, p. 57-66 (2001). | MR: 1825260 | Zbl: 0991.37030

[11] Diller (J.), Dujardin (R.), Guedj (V.).— Dynamics of rational mappings with small topological degree III: geometric currents and ergodic theory, Ann. Scient. Ec. Norm. Sup., 43 p. 235-278 (2010). | Numdam | MR: 2662665 | Zbl: 1197.37059

[12] Dinh (T. C.).— Suites d’applications méromorphes multivaluées et courants laminaires, J. Geom. Anal. 15, p. 207-227 (2005). | MR: 2152480 | Zbl: 1085.37039

[13] Dinh (T. C.), Sibony (N.).— Dynamique des applications d’allure polynomiale, J. Math. Pures Appl. (9) 82, p. 367-423 (2003). | MR: 1992375 | Zbl: 1033.37023

[14] Dinh (T. C.), Sibony (N.).— Distribution des valeurs de transformations méromorphes et applications, Comment. Math. Helv. 81, no. 1, p. 221-258 (2006). | MR: 2208805 | Zbl: 1094.32005

[15] Dujardin (R.).— Structure properties of laminar currents on 2 , J. Geom. Anal., 15, p. 25-47 (2005). | MR: 2132264 | Zbl: 1076.37033

[16] Dujardin (R.).— Sur l’intersection des courants laminaires, Pub. Mat. 48, p. 107-125 (2004). | MR: 2044640 | Zbl: 1048.32021

[17] Dujardin (R.).— Bifurcation currents and equidistribution in parameter space, Preprint, to appear in Frontiers in complex dynamics (celebrating John Milnor’s 80th birthday) (2011).

[18] Dujardin (R.), Favre (Ch.).— Distribution of rational maps with a preperiodic critical point, Amer. J. Math. 130, p. 979-1032 (2008). | MR: 2427006 | Zbl: 1246.37071

[19] Gauthier (Th.).— Strong-bifurcation loci of full Hausdorff dimension, Ann. Scient. Ec. Norm. Sup., to appear. | Numdam | MR: 3075109 | Zbl: pre06155589

[20] Guedj (V.), Zeriahi (A.).— Intrinsic capacities on compact Kähler manifolds, J. Geom. Anal. 15, no. 4, p. 607-639 (2005). | MR: 2203165 | Zbl: 1087.32020

[21] McMullen (C.T.).— Families of rational maps and iterative root-finding algorithms, Ann. of Math. 125, p. 467-493 (1987). | MR: 890160 | Zbl: 0634.30028

[22] Milnor (J. W.).— On Lattès maps, Dynamics on the Riemann Sphere, European Math. Soc., Zürich, p. 9-43 (2006). | MR: 2348953 | Zbl: 1235.37015

[23] Lyubich (M.).— Entropy properties of rational endomorphisms of the Riemann sphere, Ergodic Theory Dynam. Systems 3, p. 351-385 (1983). | MR: 741393 | Zbl: 0537.58035

[24] Shishikura (M.).— The Hausdorff dimension of the boundary of the Mandelbrot set and Julia sets, Ann. of Math. (2) 147, no. 2, p. 225-267 (1998). | MR: 1626737 | Zbl: 0922.58047

[25] Sibony (N.).— Dynamique des applications rationnelles de k , Dynamique et géométrie complexes (Lyon, 1997), Panoramas et Synthèses, 8 (1999). | MR: 1760844 | Zbl: 1020.37026

[26] Silverman (J. H.).— The arithmetic of dynamical systems, Graduate Texts in Mathematics, 241. Springer, New York (2007). | MR: 2316407 | Zbl: 1130.37001

Cited by Sources: