In this note, we observe that the maximum value achieved by the systole function over all complete finite area hyperbolic surfaces of a given signature is greater than a function that grows logarithmically in terms of the ratio .
Dans cette note, nous observons que le maximum de la fonction systole sur l’espace des surfaces hyperboliques complètes et d’aire finie de signature donnée est plus grand qu’une fonction qui croît de façon logarithmique en .
@article{AFST_2014_6_23_1_175_0, author = {Florent Balacheff and Eran Makover and Hugo Parlier}, title = {Systole growth for finite area hyperbolic surfaces}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {175--180}, publisher = {Universit\'e Paul Sabatier, Institut de Math\'ematiques}, address = {Toulouse}, volume = {Ser. 6, 23}, number = {1}, year = {2014}, doi = {10.5802/afst.1402}, mrnumber = {3204736}, zbl = {1295.30093}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1402/} }
TY - JOUR AU - Florent Balacheff AU - Eran Makover AU - Hugo Parlier TI - Systole growth for finite area hyperbolic surfaces JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2014 SP - 175 EP - 180 VL - 23 IS - 1 PB - Université Paul Sabatier, Institut de Mathématiques PP - Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1402/ DO - 10.5802/afst.1402 LA - en ID - AFST_2014_6_23_1_175_0 ER -
%0 Journal Article %A Florent Balacheff %A Eran Makover %A Hugo Parlier %T Systole growth for finite area hyperbolic surfaces %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2014 %P 175-180 %V 23 %N 1 %I Université Paul Sabatier, Institut de Mathématiques %C Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1402/ %R 10.5802/afst.1402 %G en %F AFST_2014_6_23_1_175_0
Florent Balacheff; Eran Makover; Hugo Parlier. Systole growth for finite area hyperbolic surfaces. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 23 (2014) no. 1, pp. 175-180. doi : 10.5802/afst.1402. https://afst.centre-mersenne.org/articles/10.5802/afst.1402/
[1] Adams (C.).— Maximal cusps, collars , and systoles in hyperbolic surfaces. Indiana Math. J. 47, no. 2, p. 419-437 (1998). | MR | Zbl
[2] Beardon (A.), Minda (D.).— The hyperbolic metric and geometric function theory. Quasiconformal mappings and their applications, p. 9-56, Narosa, New Delhi (2007). | MR | Zbl
[3] Buser (P.), Sarnak (P.).— On the period matrix of a Riemann surface of large genus. With an appendix by J. H. Conway and N. J. A. Sloane. Invent. Math. 117, no. 1, p. 27-56 (1994). | MR | Zbl
[4] Farb (B.), Margalit (D.).— A primer on mapping class groups. To appear in Princeton Mathematical Series. | MR | Zbl
[5] Mumford (D.).— A remark on a Mahler’s compactness theorem. Proc. AMS 28, no. 1, p. 289-294 (1971). | MR | Zbl
[6] Schmutz (P.).— Congruence subgroups and maximal Riemann surfaces. J. Geom. Anal. 4, p. 207-218 (1994). | MR | Zbl
Cited by Sources: