logo AFST
Systole growth for finite area hyperbolic surfaces
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 23 (2014) no. 1, pp. 175-180.

In this note, we observe that the maximum value achieved by the systole function over all complete finite area hyperbolic surfaces of a given signature (g,n) is greater than a function that grows logarithmically in terms of the ratio g/n.

Dans cette note, nous observons que le maximum de la fonction systole sur l’espace des surfaces hyperboliques complètes et d’aire finie de signature donnée (g,n) est plus grand qu’une fonction qui croît de façon logarithmique en g/n.

Published online:
DOI: 10.5802/afst.1402
@article{AFST_2014_6_23_1_175_0,
     author = {Florent Balacheff and Eran Makover and Hugo Parlier},
     title = {Systole growth for finite area hyperbolic surfaces},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {175--180},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 23},
     number = {1},
     year = {2014},
     doi = {10.5802/afst.1402},
     zbl = {1295.30093},
     mrnumber = {3204736},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1402/}
}
TY  - JOUR
TI  - Systole growth for finite area hyperbolic surfaces
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2014
DA  - 2014///
SP  - 175
EP  - 180
VL  - Ser. 6, 23
IS  - 1
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1402/
UR  - https://zbmath.org/?q=an%3A1295.30093
UR  - https://www.ams.org/mathscinet-getitem?mr=3204736
UR  - https://doi.org/10.5802/afst.1402
DO  - 10.5802/afst.1402
LA  - en
ID  - AFST_2014_6_23_1_175_0
ER  - 
%0 Journal Article
%T Systole growth for finite area hyperbolic surfaces
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2014
%P 175-180
%V Ser. 6, 23
%N 1
%I Université Paul Sabatier, Toulouse
%U https://doi.org/10.5802/afst.1402
%R 10.5802/afst.1402
%G en
%F AFST_2014_6_23_1_175_0
Florent Balacheff; Eran Makover; Hugo Parlier. Systole growth for finite area hyperbolic surfaces. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 23 (2014) no. 1, pp. 175-180. doi : 10.5802/afst.1402. https://afst.centre-mersenne.org/articles/10.5802/afst.1402/

[1] Adams (C.).— Maximal cusps, collars , and systoles in hyperbolic surfaces. Indiana Math. J. 47, no. 2, p. 419-437 (1998). | MR: 1647904 | Zbl: 0912.53026

[2] Beardon (A.), Minda (D.).— The hyperbolic metric and geometric function theory. Quasiconformal mappings and their applications, p. 9-56, Narosa, New Delhi (2007). | MR: 2492498 | Zbl: 1208.30001

[3] Buser (P.), Sarnak (P.).— On the period matrix of a Riemann surface of large genus. With an appendix by J. H. Conway and N. J. A. Sloane. Invent. Math. 117, no. 1, p. 27-56 (1994). | MR: 1269424 | Zbl: 0814.14033

[4] Farb (B.), Margalit (D.).— A primer on mapping class groups. To appear in Princeton Mathematical Series. | MR: 2850125 | Zbl: 1245.57002

[5] Mumford (D.).— A remark on a Mahler’s compactness theorem. Proc. AMS 28, no. 1, p. 289-294 (1971). | MR: 276410 | Zbl: 0215.23202

[6] Schmutz (P.).— Congruence subgroups and maximal Riemann surfaces. J. Geom. Anal. 4, p. 207-218 (1994). | MR: 1277506 | Zbl: 0804.32010

Cited by Sources: