The fundamental combinatorial structure of a net in is its associated set of mutually orthogonal Latin squares. We define equivalence classes of sets of orthogonal Latin squares by label equivalences of the lines of the corresponding net in . Then we count these equivalence classes for small cases. Finally we prove that the realization spaces of these classes in are empty to show some non-existence results for 4-nets in .
La structure combinatoire fondamentale d’un filet dans est donnée par l’ensemble des carrés latins orthogonaux associé. Nous définissons des classes d’équivalence de carrés latins orthogonaux a l’aide de classes d’équivalence des lignes apparaisant dans le filet de . Nous comptons le nombre de classes d’équivalence pour certains exemples de carrés petits. Finalement, nous montrons que les espaces de réalisations de ces classes pour et sont vides et nous en déduisons que les filets correspondants n’existent pas.
@article{AFST_2014_6_23_2_335_0, author = {Corey Dunn and Matthew Miller and Max Wakefield and Sebastian Zwicknagl}, title = {Equivalence classes of {Latin} squares and nets in ${\mathbb{C}P}^2$}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {335--351}, publisher = {Universit\'e Paul Sabatier, Institut de Math\'ematiques}, address = {Toulouse}, volume = {Ser. 6, 23}, number = {2}, year = {2014}, doi = {10.5802/afst.1409}, mrnumber = {3205596}, zbl = {1296.05030}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1409/} }
TY - JOUR AU - Corey Dunn AU - Matthew Miller AU - Max Wakefield AU - Sebastian Zwicknagl TI - Equivalence classes of Latin squares and nets in ${\mathbb{C}P}^2$ JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2014 SP - 335 EP - 351 VL - 23 IS - 2 PB - Université Paul Sabatier, Institut de Mathématiques PP - Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1409/ DO - 10.5802/afst.1409 LA - en ID - AFST_2014_6_23_2_335_0 ER -
%0 Journal Article %A Corey Dunn %A Matthew Miller %A Max Wakefield %A Sebastian Zwicknagl %T Equivalence classes of Latin squares and nets in ${\mathbb{C}P}^2$ %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2014 %P 335-351 %V 23 %N 2 %I Université Paul Sabatier, Institut de Mathématiques %C Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1409/ %R 10.5802/afst.1409 %G en %F AFST_2014_6_23_2_335_0
Corey Dunn; Matthew Miller; Max Wakefield; Sebastian Zwicknagl. Equivalence classes of Latin squares and nets in ${\mathbb{C}P}^2$. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 23 (2014) no. 2, pp. 335-351. doi : 10.5802/afst.1409. https://afst.centre-mersenne.org/articles/10.5802/afst.1409/
[1] Julian (R.), Abel (R.), Colbourn (C. J.), Wojtas (M.).— Concerning seven and eight mutually orthogonal Latin squares, J. Combin. Des. 12, no. 2, p. 123-131 (2004). | MR | Zbl
[2] Bartolo (E. A.), Cogolludo-Agustin (J.I.), Libgober (A.).— Depth of characters of curve complements and orbifold pencils (2011).
[3] Bartolo (E. A.), Cogolludo-Agustin (J.I.), Libgober (A.).— Depth of cohomology support loci for quasi-projective varieties via orbifold pencils (2012).
[4] Björner (A.), Las Vergnas (M.), Sturmfels (B.), White (N.), Ziegler (G. N.).— Oriented matroids, second ed., Encyclopedia of Mathematics and its Applications, vol. 46, Cambridge University Press, Cambridge (1999). | MR | Zbl
[5] Brualdi (R. A.).— Introductory combinatorics, fifth ed., Pearson Prentice Hall, Upper Saddle River, NJ (2010). | MR | Zbl
[6] Chowla (S.), Erdös (P.), Straus (E. G.).— On the maximal number of pairwise orthogonal Latin squares of a given order, Canad. J. Math. 12, p. 204-208 (1960). | MR | Zbl
[7] Colbourn (C. J.), Dinitz (J. D.) (eds.).— The CRC handbook of combinatorial designs, CRC Press Series on Discrete Mathematics and its Applications, CRC Press, Boca Raton, FL, (1996). | Zbl
[8] Dénes (J.), Keedwell (A. D.).— Latin squares and their applications, Academic Press, New York (1974). | MR | Zbl
[9] Denham (G.), Suciu (A. I.).— Multinets, parallel connections, and milnor fibrations of arrangements, (2012).
[10] Falk (M.), Yuzvinsky (S.).— Multinets, resonance varieties, and pencils of plane curves, Compos. Math. 143, no. 4, p. 1069-1088 (2007). | MR | Zbl
[11] Kawahara (Y.).— The non-vanishing cohomology of Orlik-Solomon algebras, Tokyo J. Math. 30, no. 1, 223-238 (2007). | MR | Zbl
[12] Libgober (A.), Yuzvinsky (S.).— Cohomology of the Orlik-Solomon algebras and local systems, Compositio Math. 121, no. 3, p. 337-361 (2000). | MR | Zbl
[13] Orlik (P.), Terao (H.).— Arrangements of hyperplanes, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 300, Springer-Verlag, Berlin, 1992. | MR | Zbl
[14] Pereira (J. V.), Yuzvinsky (S.).— Completely reducible hypersurfaces in a pencil, Adv. Math. 219, no. 2, p. 672-688 (2008). | MR | Zbl
[15] Reidemeister (K.).— Topologische Fragen der Differentialgeometrie. V. Gewebe und Gruppen, Math. Z. 29, no. 1, p. 427-435 (1929). | EuDML | MR
[16] Stipins (J.).— III, On finite k-nets in the complex projective plane, ProQuest LLC, Ann Arbor, MI, Thesis (Ph.D.) University of Michigan (2007). | MR
[17] Tang (Y. L.), Liang Li (Q.).— A new upper bound for the largest number of mutually orthogonal Latin squares, Math. Theory Appl. (Changsha) 25, no. 3, p. 60-63 (2005). | MR
[18] Tarry (G.).— Le problème de 36 officeurs, Compte Rendu de l’Association Française pour l’Avancement de Science Naturel, no. 2, p. 170-203 (1901). | JFM
[19] Urzua (G. A.).— On line arrangements with applications to 3-nets, 04 (2007). | Zbl
[20] Urzua (G. A.).— Arrangements of curves and algebraic surfaces, ProQuest LLC, Ann Arbor, MI, Thesis (Ph.D.) University of Michigan (2008). | MR
[21] Yuzvinsky (S.).— Realization of finite abelian groups by nets in , Compos. Math. 140, no. 6, p. 1614-1624 (2004). | MR | Zbl
[22] Yuzvinsky (S.).— A new bound on the number of special fibers in a pencil of curves, Proc. Amer. Math. Soc. 137, no. 5, p. 1641-1648 (2009). | MR | Zbl
Cited by Sources: