logo AFST
Flat 3-webs of degree one on the projective plane
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 23 (2014) no. 4, pp. 779-796.

The aim of this work is to study global 3-webs with vanishing curvature. We wish to investigate degree 3 foliations for which their dual web is flat. The main ingredient is the Legendre transform, which is an avatar of classical projective duality in the realm of differential equations. We find a characterization of degree 3 foliations whose Legendre transform are webs with zero curvature.

Le but de ce travail est d’étudier les 3-tissus globaux ayant courbure nulle. En particular, nous nous intéressons aux feuilletages de degré 3 dont le tissu dual est plat. L’ingrédient principal est la transformée de Legendre, qui est un avatar de la dualité projective classique dans le domaine des équations différentielles. Nous obtenons une characterization des feuilletages de degré 3 sur le plan projectif dont les tissus duaux ont courbure nulle.

Received:
Accepted:
Published online:
DOI: 10.5802/afst.1424
@article{AFST_2014_6_23_4_779_0,
     author = {A. Beltr\'an and M. Falla Luza and D. Mar{\'\i}n},
     title = {Flat 3-webs of degree one on the projective plane},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {779--796},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 23},
     number = {4},
     year = {2014},
     doi = {10.5802/afst.1424},
     mrnumber = {3270423},
     zbl = {1303.37016},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1424/}
}
TY  - JOUR
TI  - Flat 3-webs of degree one on the projective plane
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2014
DA  - 2014///
SP  - 779
EP  - 796
VL  - Ser. 6, 23
IS  - 4
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1424/
UR  - https://www.ams.org/mathscinet-getitem?mr=3270423
UR  - https://zbmath.org/?q=an%3A1303.37016
UR  - https://doi.org/10.5802/afst.1424
DO  - 10.5802/afst.1424
LA  - en
ID  - AFST_2014_6_23_4_779_0
ER  - 
%0 Journal Article
%T Flat 3-webs of degree one on the projective plane
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2014
%P 779-796
%V Ser. 6, 23
%N 4
%I Université Paul Sabatier, Toulouse
%U https://doi.org/10.5802/afst.1424
%R 10.5802/afst.1424
%G en
%F AFST_2014_6_23_4_779_0
A. Beltrán; M. Falla Luza; D. Marín. Flat 3-webs of degree one on the projective plane. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 23 (2014) no. 4, pp. 779-796. doi : 10.5802/afst.1424. https://afst.centre-mersenne.org/articles/10.5802/afst.1424/

[1] Brunella (M.).— Birational geometry of foliations. IMPA (2000). | MR: 1948251 | Zbl: 1082.32022

[2] Fischer (G.).— Plane Algebraic Curves, volume 15 of Student Mathematical Library. American Mathematical Society (2001). | MR: 1836037 | Zbl: 0971.14026

[3] Hénaut (A.).— Planar web geometry through abelian relations and singularities. Nankai Tracts Math., 11, p. 269-295 (2006). | MR: 2313337 | Zbl: 1133.53012

[4] Ince (E.).— Ordinary Differential Equations. Dover Publications (1944). | MR: 10757 | Zbl: 0063.02971

[5] Marín (D.), Pereira (J.V.).— Rigid at webs on the projective plane. Asian Journal of Mathematics, 17p. 163-192 (2013). | Zbl: pre06241999

[6] Pereira (J. V.).— Vector fields, invariant varieties and linear systems. Ann. Inst. Fourier (Grenoble), 51(5)p. 1385-1405 (2001). | Numdam | MR: 1860669 | Zbl: 1107.37038

[7] Pereira (J. V.), Pirio (L.).— Classification of exceptional CDQL webs on compact complex surfaces. IMRN, 12p. 2169-2282 (2010). | MR: 2652221 | Zbl: 1208.53011

[8] Pereira (J. V.), Pirio (L.).— An invitation to web geometry. IMPA (2009). | MR: 2536234 | Zbl: 1184.53002

[9] Ripoll (O.).— Géométrie des tissus du plan et équations differentielles. Thèse de Doctorat de l’Université Bordeaux 1 (2005).

[10] Ripoll (O.).— Properties of the connection associated with planar webs and applications. Preprint arXiv:math/0702321v2, (2007).

Cited by Sources: