Let be a real pencil of curves of genus two. The goal of this paper is to give a partial classification of possible singular fibers; we give the types of real configurations of singular fibers and we determine the topology of neighbors fibers.
Soit un pinceau réel en courbes de genre . L’objectif de cet article est de donner une classification partielle des fibres singulières possibles ; nous donnons les types de configurations réelles des fibres singulières et nous déterminons la topologie des fibres voisines.
@article{AFST_2015_6_24_3_427_0, author = {Mouadh Akriche and Samir Moulahi}, title = {Fibre singuli\`ere d{\textquoteright}un pinceau r\'eel en~courbes~de~genre~2}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {427--482}, publisher = {Universit\'e Paul Sabatier, Institut de Math\'ematiques}, address = {Toulouse}, volume = {6e s{\'e}rie, 24}, number = {3}, year = {2015}, doi = {10.5802/afst.1451}, mrnumber = {3403728}, language = {fr}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1451/} }
TY - JOUR AU - Mouadh Akriche AU - Samir Moulahi TI - Fibre singulière d’un pinceau réel en courbes de genre 2 JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2015 SP - 427 EP - 482 VL - 24 IS - 3 PB - Université Paul Sabatier, Institut de Mathématiques PP - Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1451/ DO - 10.5802/afst.1451 LA - fr ID - AFST_2015_6_24_3_427_0 ER -
%0 Journal Article %A Mouadh Akriche %A Samir Moulahi %T Fibre singulière d’un pinceau réel en courbes de genre 2 %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2015 %P 427-482 %V 24 %N 3 %I Université Paul Sabatier, Institut de Mathématiques %C Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1451/ %R 10.5802/afst.1451 %G fr %F AFST_2015_6_24_3_427_0
Mouadh Akriche; Samir Moulahi. Fibre singulière d’un pinceau réel en courbes de genre 2. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 24 (2015) no. 3, pp. 427-482. doi : 10.5802/afst.1451. https://afst.centre-mersenne.org/articles/10.5802/afst.1451/
[1] Akriche (M.), Moulahi (S.).— Invariants réels d’un pinceau en courbes de genre , En préparation.
[2] Akriche (M.), Smirani (M.).— Real elliptic surfaces with double section and real tetragonal curves Bull. Belg. Math. Soc. - Simon Stevin 19, No. 3, p. 445-460 (2012). ISSN 1370-1444 | MR | Zbl
[3] Akriche (M.), Mangolte (F.).— Nombres de Betti des surfaces elliptiques réelles. Beitrge Zur algebra and geometrie, vol 49, n1, p. 153-164 (2008). | MR | Zbl
[4] Bihan (F.), Mangolte (F.).— Topological types of real regular elliptic surfaces, Geometriae Dedicata 127, p. 57-73 (2007). | MR | Zbl
[5] Bolza (O.).— On Binary Sextics with Linear Transformations into Themselves, American Journal of Mathematics, Vol. 10, No. 1, p. 47-70, (1887). | MR
[6] Bujalance (E.), Cirre (F. J.), Gamboa (J. M.), Gromadzki (G.).— Symmetries of compact Riemann surfaces, Springer, (2007). | Zbl
[7] Degtyarev (A.), Itenberg (I.), Kharlamov (V.).— On deformation types of real elliptic surfaces, Amer. J. Math. 130, no. 6, p. 1561-1627 (2008). | MR | Zbl
[8] Deligne (P.), Mumford (D.).— The irreductibility of the space of curves of given genus, Publ. Math. Inst. Hautes Etud. Sci. 36, p. 75-110 (1969). | Numdam | MR | Zbl
[9] Griffiths (P.), Harris (J.).— Principles of algebraic geometry, John Wiley and Sons, New York Chichester Brisbane Toronto, (1978). | MR | Zbl
[10] Horikawa (E.).— On algebraic surfaces with pencils of curves of genus 2, In Complex Analysis and Algebraic Geometry, a volume dedicated to Kodaira, p. 79-90, Cambridge (1977). | MR | Zbl
[11] Itaka (S.).— On the degenerates of normally polarized abelian variety of dimension 2 and an algebraic curve of genus two, Master degree thesis, University of tokyo, (1967).
[12] Kobayashi (S.).— Hyperbolic manifolds and holomorphic mappings, New York, Marcel Dekker, Inc., (1970). | MR | Zbl
[13] Kodaira (K.).— On compact complex analytic surfaces, I, Ann. Math. 71, pp. 111-162 (1960). II, Ann. Math. 77, p. 563-626 (1963). III, Ann. Math. 78, p. 295-626 (1963). | MR | Zbl
[14] Liu (Q.).— Courbes stables de genre 2 et leur schéma de modules, Math. Ann. 295, p. 201-222 (1993). | MR | Zbl
[15] Liu (Q.).— Algebraic Geometry and Arithmetic curves, Oxford Graduate Texts in Mathematics (2006). | Zbl
[16] Liu (Q.).— Modèles minimaux des courbes de genre 2, Journal für die reine und angewandte Mathematik, 453, p. 137-164 (1994). | MR | Zbl
[17] Mangolte (F.).— Surfaces elliptiques réelles et inégalité de Ragsdale-Viro, Math. Z. 235, p. 213-226 (2000) | MR | Zbl
[18] Namikawa (Y.), Ueno (K.).— On fibers in families of curves of genus two I, singular fibers of elliptic type, in Number Theory, Algebraic Geometry and Commutative Algebra, in honor of Y. Akizuki (Y. Kusunoki, S. Mizohata, M. Nagata, H. Toda, M. Yamaguchi, H. Yoshizawa, eds.) p. 297–371, (1973). | MR | Zbl
[19] Namikawa (Y.), Ueno (K.).— The complete classification of fibres in pensils of curves of genus tow, Springer Verlag, p. 143-186 (1973). | MR | Zbl
[20] Ogg (A. P.).— On pencils of curves of genus two, Topology, 5 p. 355-362, (1966). | MR | Zbl
[21] Persson (U.).— Chern invariants of surfaces of general type, Ann. J. Math.,28 : p. 377-404, 1906.Compositio Mathematica, tome 43, N1, P. p. 3-58 (1981). | Numdam | MR | Zbl
[22] Silhol (R.).— Real algebraic surfaces with rational or elliptic fiberings, Math. Z. 186, p. 465-499 (1984). | MR | Zbl
[23] Silhol (R.).— Real algebraic surfaces, Lect. Notes Math. Vol. 1392. Springer Verlag, Berlin Heidelberg New York, (1989). | MR | Zbl
[24] Slodowy (P.).— Simple Singularities and Simple Algebraic Groups, Springer Lecture Notes in Math., (1980). | MR | Zbl
[25] Ueno (K.) .— On fibre spaces of normally polarized abelian varieties of dimension two, II. Singular fibres of the first kind, J. Fac. Sci. Tokyo 19, p. 163-199 (1972). | MR | Zbl
[26] Viehweg (E.).— Invarianten der degenerierten Fasern in lokalen Familien von Kurven, J. Reine Angew. Math. 293, p. 284-308 (1977). | MR | Zbl
[27] Voisin (C.).— Espaces de modules et construction d’invariants en géométrie, CNRS et IHÉS.
[28] Xiao (G.).— Surfaces fibrées en courbes de genre deux, Berlin : Springer-Verlag, (1985). | MR | Zbl
Cited by Sources: