Discrete Ricci Curvature bounds for Bernoulli-Laplace and Random Transposition models
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 24 (2015) no. 4, pp. 781-800.

We calculate a Ricci curvature lower bound for some classical examples of random walks, namely, a chain on a slice of the n-dimensional discrete cube (the so-called Bernoulli-Laplace model) and the random transposition shuffle of the symmetric group of permutations on n letters.

Nous calculons une borne inférieure pour la courbure de Ricci pour quelques exemples classiques de marches aléatoires. Notamment nous considérons une marche sur une tranche du cube discret (dite modèle de Bernoulli-Laplace) et la marche sur le groupe symétrique des permutations obtenue par produits de transpositions indépendantes et uniformes.

DOI: 10.5802/afst.1464

Matthias Erbar 1; Jan Maas 2; Prasad Tetali 3

1 Institute for Applied Mathematics, University of Bonn, Endenicher Allee 60, 53115 Bonn, Germany
2 Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria
3 School of Mathematics and School of Computer Science, Georgia Institute of Technology, Atlanta, GA 30332, USA
@article{AFST_2015_6_24_4_781_0,
     author = {Matthias Erbar and Jan Maas and Prasad Tetali},
     title = {Discrete {Ricci} {Curvature} bounds for {Bernoulli-Laplace} and {Random} {Transposition} models},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {781--800},
     publisher = {Universit\'e Paul Sabatier, Institut de Math\'ematiques},
     address = {Toulouse},
     volume = {Ser. 6, 24},
     number = {4},
     year = {2015},
     doi = {10.5802/afst.1464},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1464/}
}
TY  - JOUR
AU  - Matthias Erbar
AU  - Jan Maas
AU  - Prasad Tetali
TI  - Discrete Ricci Curvature bounds for Bernoulli-Laplace and Random Transposition models
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2015
SP  - 781
EP  - 800
VL  - 24
IS  - 4
PB  - Université Paul Sabatier, Institut de Mathématiques
PP  - Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1464/
DO  - 10.5802/afst.1464
LA  - en
ID  - AFST_2015_6_24_4_781_0
ER  - 
%0 Journal Article
%A Matthias Erbar
%A Jan Maas
%A Prasad Tetali
%T Discrete Ricci Curvature bounds for Bernoulli-Laplace and Random Transposition models
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2015
%P 781-800
%V 24
%N 4
%I Université Paul Sabatier, Institut de Mathématiques
%C Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1464/
%R 10.5802/afst.1464
%G en
%F AFST_2015_6_24_4_781_0
Matthias Erbar; Jan Maas; Prasad Tetali. Discrete Ricci Curvature bounds for Bernoulli-Laplace and Random Transposition models. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 24 (2015) no. 4, pp. 781-800. doi : 10.5802/afst.1464. https://afst.centre-mersenne.org/articles/10.5802/afst.1464/

[1] Ambrosio (L.), Gigli (N.), and Savaré (G.).— Metric measure spaces with Riemannian Ricci curvature bounded from below. Duke Math. J., 163(7) p. 1405-1490 (2014). | MR | Zbl

[2] Bakry (D.) and Émery (M.).— Diffusions hypercontractives. In Séminaire de probabilités, XIX, 1983/84, volume 1123 of Lecture Notes in Math., pages 177-206. Springer, Berlin (1985). | Numdam | MR | Zbl

[3] Bobkov (S. G.) and Tetali (P.).— Modified logarithmic Sobolev inequalities in discrete settings. J. Theoret. Probab., 19(2) p. 289-336 (2006). | MR | Zbl

[4] Caputo (P.), Dai Pra (P.), and Posta (G.).— Convex entropy decay via the Bochner-Bakry-Emery approach. Ann. Inst. Henri Poincaré Probab. Stat., 45(3) p. 734-753, (2009). | Numdam | MR | Zbl

[5] Chow (S.-N.), Huang (W.), Li (Y.), and Zhou (Z.).— Fokker-Planck equations for a free energy functional or Markov process on a graph. Arch. Ration. Mech. Anal., 203(3) p. 969-1008 (2012). | MR | Zbl

[6] Diaconis (P.) and Saloff-Coste (L.).— Logarithmic Sobolev inequalities for finite Markov chains. Ann. Appl. Probab., 6(3) p. 695-750 (1996). | MR | Zbl

[7] Diaconis (P.) and Shahshahani (M.).— Generating a random permutation with random transpositions. Z. Wahrsch. Verw. Gebiete, 57(2) p. 159-179 (1981). | MR | Zbl

[8] Diaconis (P.) and Shahshahani (M.).— Time to reach stationarity in the Bernoulli-Laplace diffusion model. SIAM J. Math. Anal., 18(1) p. 208-218 (1987). | MR | Zbl

[9] Erbar (M.) and Maas (J.).— Ricci curvature of finite Markov chains via convexity of the entropy. Arch. Ration. Mech. Anal., 206(3) p. 997-1038 (2012). | MR | Zbl

[10] Erbar (M.) and Maas (J.).— Gradient flow structures for discrete porous medium equations. Discrete Contin. Dyn. Syst., 34(4) p. 1355-1374 (2014). | MR | Zbl

[11] Gao (F.) and Quastel (J.).— Exponential decay of entropy in the random transposition and Bernoulli-Laplace models. Ann. Appl. Probab., 13(4) p. 1591-1600 (2003). | MR | Zbl

[12] Gigli (N.) and Maas (J.).— Gromov-Hausdorff convergence of discrete transportation metrics. SIAM J. Math. Anal., 45(2) p. 879-899 (2013). | MR | Zbl

[13] Goel (S.).— Modified logarithmic Sobolev inequalities for some models of random walk. Stochastic Process. Appl., 114(1) p. 51-79 (2004). | MR | Zbl

[14] Gozlan (N.), Melbourne (J.), Perkins (W.), Roberto (C.), Samson (P-M.), and Tetali (P.).— Working Group in New directions in mass transport: discrete versus continuous. AIM SQuaRE report, October (2013).

[15] Gozlan (N.), Roberto (C.), Samson (P.-M.), and Tetali (P.).— Displacement convexity of entropy and related inequalities on graphs. Probability Theory and Related Fields, 160, p. 47-94 (2014). | MR

[16] Lee (T.-Y.) and Yau (H.-T.).— Logarithmic Sobolev inequality for some models of random walks. Ann. Probab., 26(4) p. 1855-1873 (1998). | MR | Zbl

[17] Lott (J.) and Villani (C.).— Ricci curvature for metric-measure spaces via optimal transport. Ann. Math. (2), 169(3) p. 903-991 (2009). | MR | Zbl

[18] Maas (J.).— Gradient flows of the entropy for finite Markov chains. J. Funct. Anal., 261(8) p. 2250-2292 (2011). | MR | Zbl

[19] Mielke (A.).— A gradient structure for reaction-diffusion systems and for energy-drift-diffusion systems. Nonlinearity, 24(4) p. 1329-1346 (2011). | MR | Zbl

[20] Mielke (A.).— Geodesic convexity of the relative entropy in reversible Markov chains. Calc. Var. Partial Differential Equations, 48(1) p. 1-31 (2013). | MR | Zbl

[21] Ollivier (Y.).— Ricci curvature of Markov chains on metric spaces. J. Funct. Anal., 256(3) p. 810-864 (2009). | MR | Zbl

[22] Ollivier (Y.).— A survey of Ricci curvature for metric spaces and Markov chains. Adv. Stud. Pure Math., 57, p. 343-381 (2010). | MR | Zbl

[23] Sammer (M.D.).— Aspects of mass transportation in discrete concentration inequalities. PhD thesis, Georgia Institute of Technology (2005). | MR

[24] Sturm (K.-Th.).— On the geometry of metric measure spaces. I and II. Acta Math., 196(1) p. 65-177 (2006). | MR | Zbl

Cited by Sources: