logo AFST

Pluripotential theory on compact Hermitian manifolds
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 25 (2016) no. 1, pp. 91-139.

Dans cet article nous collectons des résultats fondamentaux de la théorie du potentiel sur des variétés hermitiennes compactes. En particulier, nous discutons en détail la théorie de la capacité, plusieurs principes de comparaison, et la résolution de l’équation de Calabi-Yau sur les variétés hermitiennes compactes.

In this survey article we collect the basic results in pluripotential theory in the setting of compact Hermitian manifolds. In particular we discuss in detail the corresponding capacity theory, various comparison principles, and the solution of the Hermitian counterpart of the Calabi-Yau equation.

Reçu le :
Accepté le :
Publié le :
DOI : https://doi.org/10.5802/afst.1488
@article{AFST_2016_6_25_1_91_0,
     author = {S{\l}awomir Dinew},
     title = {Pluripotential theory on compact {Hermitian} manifolds},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {91--139},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 25},
     number = {1},
     year = {2016},
     doi = {10.5802/afst.1488},
     mrnumber = {3485292},
     zbl = {1342.32022},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1488/}
}
Sławomir Dinew. Pluripotential theory on compact Hermitian manifolds. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 25 (2016) no. 1, pp. 91-139. doi : 10.5802/afst.1488. https://afst.centre-mersenne.org/articles/10.5802/afst.1488/

[1] Alessandrini (L.) and Bassanelli (G.).— Modifications of compact balanced manifolds, C. R. Acad. Sci. Paris 320, p. 1517-1522 (1995). | Zbl 0842.32024

[2] Bedford (E.) and Taylor (B. A.).— The Dirichlet problem for a complex Monge-Ampère equation. Invent. Math. 37, no. 1, p. 1-44 (1976). | Article | Zbl 0315.31007

[3] Bedford (E.) and Taylor (B. A.).— A new capacity for plurisubharmonic functions, Acta Math. 149, no. 1-2,p. 1-40 (1982). | Article | MR 674165 | Zbl 0547.32012

[4] Blanchard.— Sur les vatiétés analytiques complexes, Anal. Sci. Ecole Norm. Sup. 73, p. 157-202 (1956). | Article | Zbl 0073.37503

[5] Blocki (Z.).— On the uniform estimate in the Calabi-Yau theorem, II. Sci. China Math. 54, no. 7, p. 1375-1377 (2011). | Article | MR 2817572 | Zbl 1239.32032

[6] Boucksom (S.), Demailly (J.P.), Paun (M.) and Peternell (T.).— The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension, J. Alg. Geom. 22, p. 201-248 (2013). | Article | Zbl 1267.32017

[7] Cao (H. D.).— Deformation of Kähler metrics to Kähler-Einstein metrics on compact Kähler manifolds. Invent. Math. 81, no. 2, p. 359-372 (1985). | Article | Zbl 0574.53042

[8] Cascini (P.).— Rational curves on complex manifolds. Milan J. Math. 81, no. 2, p. 291-315 (2013). | Article | MR 3129787

[9] Cherrier (P.).— Équations de Monge-Ampère sur les variétés hermitiennes compactes. (French) [Monge-Ampére equations on compact Hermitian manifolds] Bull. Sci. Math. (2) 111, no. 4, p. 343-385 (1987). | Zbl 0629.58028

[10] Chern (S.S.), Levine (H.I.) and Nirenberg (L.).— Intrinsic norms on a complex manifold (1969). Global Analysis (Papers in Honor of K. Kodaira) p. 119-139 Univ. Tokyo Press, Tokyo | Article

[11] Demailly (J.P.).— Champs magnetiques et inegalities de Morse pour la ¯-cohomologie, Ann. Inst. Fourier 35, p. 189-229 (1985). | Article | Zbl 0565.58017

[12] Demailly (J.P.).— A numerical criterion for very ample line bundles. J. Differential Geom. 37, no. 2, p. 323-374 (1993). | Article | MR 1205448 | Zbl 0783.32013

[13] Demailly (J.P.).— Holomorphic Morse inequalities and the Green-Griffiths-Lang conjecture, Pure and Appl. Math. Quarterly 7, p. 1165-1208 (2011). | Article | MR 2918158 | Zbl 1316.32014

[14] Demailly (J.P.).— Complex Analytic and Differential geometry, self published e-book.

[15] Delanoë (P.).— Équations du type de Monge-Ampère sur les variétés riemanniennes compactes. II. (French) [Monge-Ampère equations on compact Riemannian manifolds. II] J. Funct. Anal. 41, no. 3, p. 341-353 (1981). | Article | Zbl 0474.58023

[16] Dinew (S.) and Kolodziej (S.).— Pluripotential estimates on compact Hermitian Manifolds, Advances in geometric analysis, 69-86, Adv. Lect. Math. (21) (2012). | Article | MR 3485292 | Zbl 1317.32066

[17] Dloussky (G.), Oeljeklaus (K.) and Toma (M.).— Class VII 0 surfaces with b 2 curves, Tohoku Math. J. (2) 55 p. 283-309 (2003). | Article

[18] Eyssidieux (P.), Guedj (V.) and Zeriahi (A.).— Singular Kähler-Einstein metrics. J. Amer. Math. Soc. 22, p. 607-639 (2009). | Article

[19] Fernandez (M.), Ivanov (S.), Ugarte (L.) and Villacampa (R.).— Non Kaehler heterotic string compactifications with non-zero fluxes and constant dilation, Comm. Math. Phys. 288, p. 677-697 (2009). | Article | MR 2500995 | Zbl 1197.83103

[20] Fino (A.), Parton (M.) and Salamon (S.).— Families of strong KT structures in six dimensions. Comment. Math. Helv. 79, p. 317-340 (2004). | Article | MR 2059435

[21] Fu (Y.), Li (J.) and Yau (S. T.).— Balanced metrics on non-Kähler Claabi-Yau threefolds. J. Diff. Geom. 90, p. 81-130 (2012). | Article

[22] Fino (A.), Tomassini (G.).— On Astheno-Kähler metrics, J. Lond. Math. Soc. 83, no. 2, p. 290-308 (2011). | Article | Zbl 1215.53066

[23] Gauduchon (P.).— Le théorème de l’excentricitè nulle. (French) C. R. Acad. Sci. Paris 285, p. 387-390 (1977).

[24] Gill (M.).— Convergence of the parabolic complex Monge-Ampère equation on compact Hermitian manifolds. Comm. Anal. Geom. 19, no. 2, p. 277-303 (2011). | Article | Zbl 1251.32035

[25] Guan (B.) and Li (Q.).— Complex Monge-Ampère equations and totally real submanifolds. Adv. Math. 225, p. 1185-1223 (2010). | Article | Zbl 1206.58007

[26] Guedj (V.) and Zeriahi (A.).— Intrinsic capacities on compact Kähler manifolds. J. Geom. Anal. 15, no. 4, p. 607-639 (2005). | Article | Zbl 1087.32020

[28] Guedj (V.) and Zeriahi (A.).— The weighted Monge-Ampère energy of quasiplurisubharmonic functions. J. Funct. Anal. 250, no. 2, p. 442-482 (2007). | Article | Zbl 1143.32022

[29] Hopf (H.).— Zur Topologie der komplexen Mannigfaltigkeiten, Studies and Essays Presented to R. Courant on his 60th Birthday, January 8, Interscience Publishers, Inc., New York, p. 167-185 (1848).

[30] Hörmander (L.).— Notions of convexity. Progress in Mathematics, 127. Birkhäuser Boston, Inc., Boston, MA, viii+414 pp. (1994). | Zbl 0835.32001

[31] Inoue (M.).— On surfaces of Class VII 0 . Invent. Math. 24 (1974), p. 269-310. | Article | Zbl 0283.32019

[32] Jost (J.) and Yau (S. T.).— A non linear elliptic system for maps from Hermitian to Riemannian manifolds and rigidity theorems in Hermitian geoemtry. Acta Math. 170, p. 221-254 (1993). | Article | MR 1226528 | Zbl 0806.53064

[33] Kato (M.).— Compact complex manifolds containing “global” spherical shells. I, Proceedings of the International Symposium on Algebraic Geometry (Kyoto Univ., Kyoto, 1977), Tokyo.— Kinokuniya Book Store, p. 45-84.

[34] Kodaira (K.).— On the structure of compact complex analytic surfaces. I, Amer. J. Math. 86 p. 751-798 (1964). | Article | MR 187255 | Zbl 0137.17501

[35] Kodaira (K.).— On the structure of compact complex analytic surfaces. II, Amer. J. Math. 88 p. 682-721 (1966). | Article | MR 205280 | Zbl 0193.37701

[36] Kodaira (K.).— On the structure of compact complex analytic surfaces. III, Amer. J. Math. 90 p. 55-83 (1968). | Article | MR 228019

[37] Kodaira (K.).— On the structure of complex analytic surfaces. IV, Amer. J. of Math. 90 p. 1048-1066 (1968). | Article | MR 239114 | Zbl 0193.37702

[38] Kodaira (K.) and . Spencer (D.C.).— On deformations of complex analytic structures III. Stability theorems for complex structures. Ann. of Math. (2) 71 p. 43-76 (1960). | Article | MR 115189

[39] Kolodziej (S.).— The complex Monge-Ampère equation. Acta Math. 180, no. 1, p. 69-117 (1998). | Article | Zbl 0913.35043

[40] Kolodziej (S.).— The Monge-Ampère equation on compact Kähler manifolds. Indiana Univ. Math. J. 52, no.3, p. 667-686 (2003). | Article | Zbl 1039.32050

[41] Nguyen (N. C.) and Kolodziej (S.).— Weak solutions to the complex Monge-Ampère equation on compact Hermitian manifolds, Contemp. Math. 644, p. 141-158 (2015). | Article | Zbl 1343.32031

[42] Kolodziej (S.), Tian (G.).— A uniform L estimate for complex Monge-Ampère equations. Math. Ann. 342, no. 4, p. 773-787 (2008). | Article | Zbl 1159.32022

[43] Lübke (M.), Teleman (A.).— The Kobayashi-Hitchin correspondence, World Scientific publishing Co. (1995). | Article | Zbl 0849.32020

[44] Mitsuo (K.).— Astheno-Kähler structures on Calabi-Eckman manifolds. Colloq. Math. 155, p. 33-39 (2009). | Article

[45] Mori (S.).— Projective manifolds with ample tangent bundles. Ann. of Math. (2) 110, no. 3, p. 593-606 (1979). | Article | MR 554387 | Zbl 0423.14006

[46] Nakamura (I.).— On surfaces of class VII 0 with curves, Invent. Math. 78 (3), p. 393-443 (1984). | Article | Zbl 0575.14033

[47] Popovici (D.).— Deformation limits of projective manifolds: Hodge numbers and strongly Gauduchon metrics. Invent. Math. 194, no. 3, p. 515-534 (2013). | Article | MR 3127061 | Zbl 1287.32008

[48] Popovici (D.).— An Observation Relative to a Paper by J. Xiao, preprint arXiv:1405.2518, to appear in Math. Ann. as Sufficient bigness criterion for differences of two nef classes. | Article | MR 3451400

[49] Popovici (D.).— Deformation openness and closedness of various classes of compact complex manifolds; examples, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 13, no. 2, p. 255-305 (2014). | Zbl 1294.32006

[50] Siu (Y. T.).— Dynamic multiplier ideal sheaves and the construction of rational curves in Fano manifolds, preprint arXiv:0902.2809. | Zbl 1201.14013

[51] Song (J.) and Tian (G.).— The Kähler-Ricci flow through singularities, preprint arXiv:0909.4898. | Article

[52] Streets (J.) and Tian (G.).— Hermitian curvature flow. J. Eur. Math. Soc. (JEMS) 13, no. 3, p. 601-634 (2011). | Article | Zbl 1214.53055

[53] Streets (J.) and Tian (G.).— Regularity results for pluriclosed flow. Geom. Topol. 17, no. 4, p. 2389-2429 (2013). | Article | MR 3110582 | Zbl 1272.32022

[54] Teleman (A.).— Instantons and curves on class VII surfaces. Ann. of Math. (2) 172, no. 3, p. 1749-1804 (2010). | Article | MR 2726099 | Zbl 1231.14028

[55] Tosatti (V.) and Weinkove (B.).— Estimates for the complex Monge-Ampère equation on Hermitian and balanced manifolds. Asian J. Math. 14, no. 1, p. 19-40 (2010). | Article | Zbl 1208.32034

[56] Tosatti (V.) and Weinkove (B.).— The complex Monge-Ampère equation on compact Hermitian manifolds. J. Amer. Math. Soc. 23, no. 4, p. 1187-1195 (2010). | Article | Zbl 1208.53075

[57] Tosatti (V.) and Weinkove (B.).— Plurisubharmonic functions and nef classes on complex manifolds. Proc. Amer. Math. Soc. 140, no. 11, p. 4003-4010 (2012). | Article | MR 2944739 | Zbl 1273.53063

[58] Tosatti (V.) and Weinkove (B.).— The Chern-Ricci flow on complex surfaces. Compos. Math. 149, no. 12, p. 2101-2138 (2013). | Article | MR 3143707 | Zbl 1286.53074

[59] Tosatti (V.), Y. WANG, Weinkove (B.) and Yang (X.).— 𝒞 2,α estimates for nonlinear elliptic equations in complex and almost complex geometry, Calc. Var. PDE 54, p. 431-453 (2015). | Article | MR 3385166

[60] Tian (G.) and Zhang (Z.).— On the Kähler-Ricci flow on projective manifolds of general type. Chinese Ann. Math. Ser. B 27, no. 2, p. 179-192 (2006). | Article | Zbl 1102.53047

[61] Xiao (J.).— Weak trancendental holomorphic Morse inequalities on compact Kähler manifolds, preprint arXiv1308.2878, Ann. Inst. Fourier 65, p. 1367-1379 (2015). | Article | Zbl 1333.32025

[62] Yau (S.T.).— On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I. Comm. Pure Appl. Math. 31, no. 3, p. 339-411 (1978). | Article | Zbl 0369.53059