We sketch a proof of a conjecture of [13] that relates the geometric Eisenstein series sheaf with semi-infinite cohomology of the small quantum group with coefficients in the tilting module for the big quantum group.
Dans cette note on donne une esquisse de la démonstration d’une conjecture de [13] qui établit un lien entre le faisceau correspondant à la série d’Eisenstein géométrique et la cohomologie semi-infinie du petit groupe quantique à coefficients dans le module basculant pour le groupe quantique de Lusztig.
@article{AFST_2016_6_25_2-3_235_0, author = {D. Gaitsgory}, title = {Eisenstein series and quantum groups}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {235--315}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 25}, number = {2-3}, year = {2016}, doi = {10.5802/afst.1495}, zbl = {1411.14020}, mrnumber = {3530159}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1495/} }
TY - JOUR AU - D. Gaitsgory TI - Eisenstein series and quantum groups JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2016 SP - 235 EP - 315 VL - 25 IS - 2-3 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1495/ DO - 10.5802/afst.1495 LA - en ID - AFST_2016_6_25_2-3_235_0 ER -
%0 Journal Article %A D. Gaitsgory %T Eisenstein series and quantum groups %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2016 %P 235-315 %V 25 %N 2-3 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1495/ %R 10.5802/afst.1495 %G en %F AFST_2016_6_25_2-3_235_0
D. Gaitsgory. Eisenstein series and quantum groups. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 25 (2016) no. 2-3, pp. 235-315. doi : 10.5802/afst.1495. https://afst.centre-mersenne.org/articles/10.5802/afst.1495/
[1] Arkhipov (S.).— Semin-infinite cohomology of quantum groups, Comm. Math. Phys. 188 p. 379-405 (1997). | DOI | MR
[2] Arkhipov (S.) and Gaitsgory (D.).— Differential operators on the loop group via chiral algebras, Internat. Math. Res. Notices 4, p. 165-210 (2002). | DOI
[3] Arkhipov (S.) and Gaitsgory (D.).— Localization and the long intertwining operator for representations of affine Kac-Moody algebras, available at http://www.math.harvard.edu/ gaitsgde/GL/.
[4] Arinkin (D.) and Gaitsgory (D.).— Singular support of coherent sheaves, and the geometric Langlands conjecture, Selecta Math. New Ser. 21, p. 1-199 (2015). | DOI | MR | Zbl
[5] Beilinson (A.), Ginzburg (V.), Soerge (W.).— Koszul duality patterns in representation theory, J. Amer. Math. Soc. 9, p. 473-527 (1996). | DOI | MR | Zbl
[6] Beilinson (A.) and Drinfeld (V.).— Chiral algebras, AMS Colloquium Publications 51, (2004). | DOI | Zbl
[7] Braverman (A.) and Gaitsgory (D.).— Geometric Eisenstein series, Invent. Math. 150, p. 287-84 (2002). | DOI | MR
[8] Braverman (A.) and Gaitsgory (D.).— Deformations of local systems and Eisenstein series, GAFA 17, p. 1788-1850 (2008). | DOI | MR | Zbl
[9] Drinfeld (V.) and Gaitsgory (D.).— On some finiteness questions for algebraic stacks, GAFA 23 (2013), p. 149-294. | DOI | MR | Zbl
[10] Drinfeld (V.) and Gaitsgory (D.).— Compact generation of the category of D-modules on the stack of G-bundles on a curve, arXiv:1112.2402 | DOI | MR | Zbl
[11] Drinfeld (V.) and Gaitsgory (D.).— Geometric constant term functor(s), arXiv:1311.2071. | DOI | MR | Zbl
[12] Bezrukavnikov (R.), Finkelberg (M.), Schechtman (V.).— Factorizable sheaves and quantum groups, Lecture Notes in Mathematics 1691 (1998). | DOI | Zbl
[13] Feigin (B.), Finkelberg (M.), Kuznetsov (A.), Mirkovic (I.).— Semi-infinite FlagsÐII, The AMS Translations 194, p. 81-148 (1999).
[14] Finkelberg (M.) and Mirkovic (I.).— Semi-infinite Flags-I. Case of global curve , Differential topology, infinite-dimensional Lie algebras, and applications, Amer. Math. Soc. Transl. Ser. 2 194, p. 81-112 (1999). | DOI
[15] Gaitsgory (D.).— Twisted Whittaker model and factorizable sheaves, Selecta Math. (N.S.) 13 (2008), p. 617-659. | DOI | MR | Zbl
[16] Gaitsgory (D.).— Outline of the proof of the geometric Langlands conjecture for GL(2), arXiv:1302.2506. | Zbl
[17] Gaitsgory (D.), The Atiyah-Bott formula for the cohomology of the moduli space of bundles on a curve, available at http://www.math.harvard.edu/ gaitsgde/GL/
[18] Gaitsgory (D.).— Notes on factorizable sheaves, available at http://www.math.harvard.edu/ gaitsgde/GL/
[19] Gaitsgory (D.).— What acts on geometric Eisenstein series, available at http://www.math.harvard.edu/ gaitsgde/GL/ | DOI | MR
[20] Gaitsgory (D.).— Kac-Moody representations (Notes for Day 4, Talk 3), available at https://sites.google.com/site/geometriclanglands2014/notes
[21] Gaitsgory (D.) and Rozenblyum (N.).— Crystals and D-modules, PAMQ 10, p. 57-155 (2014). | DOI | MR
[22] Kazhdan (D.) and Lusztig (G.).— Tensor structures arising from affine Lie algebras, JAMS 6 (1993), p. 905-1011 and 7, p. 335-453 (1994). | DOI | MR | Zbl
[23] Kashiwara (M.) and Tanisaki (T.).— Kazhdan-Lusztig conjecture for symmetrizable Kac-Moody Lie algebras III: positive rational case, Asian J. of Math. 2, p. 779-832 (1998). | DOI | MR | Zbl
[24] Lurie (J.).— Higher Algebra, available at http://www.math.harvard.edu/ lurie/
[25] Raskin (S.).— Factorization algebras (Notes for Day 2, Talk 2), available at https://sites.google.com/site/geometriclanglands2014/notes
[26] Raskin (S.).— Factorization categories (Notes for Day 3, Talk 1), available at https://sites.google.com/site/geometriclanglands2014/notes
[27] Raskin (S.).— Chiral categories, available at http://math.mit.edu/ sraskin/
[28] Schechtman (S.) and Varchenko (A.).— Arrangements of hyperplanes and Lie algebra homology, Invent. Math. 106, p. 134-194 (1991). | DOI | MR
[29] Schechtman (S.) and Varchenko (A.).— Quantum groups and homology of local systems, ICM satellite conference proceedings: Algebraic geometry and analytic geometry (Tokyo 1990), Springer, p. 182-191 (1991). | DOI | MR
Cited by Sources: