We define composite DAHA-superpolynomials of torus knots, depending on pairs of Young diagrams and generalizing the composite HOMFLY-PT polynomials in the skein theory of the annulus. We provide various examples. Our superpolynomials extend the DAHA-Jones (refined) polynomials and satisfy all standard symmetries of the DAHA-superpolynomials of torus knots. The latter are conjecturally related to the HOMFLY-PT homology. At the end, we construct two DAHA-hyperpolynomials extending the DAHA-Jones polynomials of type closely related to the Deligne-Gross approach to the exceptional root systems; this theme is of experimental nature.
Nous définissons les DAHA-superpolynômes composites associés aux nœuds toriques, en fonction des paires de diagrammes de Young qui généralisent les polynômes de HOMFLY-PT composites dans la théorie de skein de l’anneau. Nous donnons divers exemples. Nos superpolynômes étendent les polynômes (raffinés) de DAHA-Jones et satisfont toutes les symétries standards des DAHA-superpolynômes des nœuds toriques. Ces derniers sont conjecturalement liés à l’homologie de HOMFLY-PT. À la fin, nous construisons deux DAHA-hyperpolynômes en étendant les polynômes de DAHA-Jones de type . Ils sont étroitement liés à l’approche de Deligne-Gross des systèmes de racines exceptionnels ; ce thème est de nature expérimentale.
DOI: 10.5802/afst.1501
Ivan Cherednik 1; Ross Elliot 2
@article{AFST_2016_6_25_2-3_433_0, author = {Ivan Cherednik and Ross Elliot}, title = {Refined composite invariants of torus knots via {DAHA}}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {433--471}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 25}, number = {2-3}, year = {2016}, doi = {10.5802/afst.1501}, zbl = {1379.57008}, mrnumber = {3530165}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1501/} }
TY - JOUR AU - Ivan Cherednik AU - Ross Elliot TI - Refined composite invariants of torus knots via DAHA JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2016 SP - 433 EP - 471 VL - 25 IS - 2-3 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1501/ DO - 10.5802/afst.1501 LA - en ID - AFST_2016_6_25_2-3_433_0 ER -
%0 Journal Article %A Ivan Cherednik %A Ross Elliot %T Refined composite invariants of torus knots via DAHA %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2016 %P 433-471 %V 25 %N 2-3 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1501/ %R 10.5802/afst.1501 %G en %F AFST_2016_6_25_2-3_433_0
Ivan Cherednik; Ross Elliot. Refined composite invariants of torus knots via DAHA. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 25 (2016) no. 2-3, pp. 433-471. doi : 10.5802/afst.1501. https://afst.centre-mersenne.org/articles/10.5802/afst.1501/
[1] Aiston (A.K.), and Morton (H.).— Idempotents of Hecke algebras of type A, J. Knot Theory Ramif. 7, p. 463-487; arXiv:math.QA/9702017 (1998). | DOI | MR | Zbl
[2] Chen (L.), and Chen (Q.).— Orthogonal Quantum Group Invariants Of Links, arXiv: 1007.1656v1 (2010). | DOI | MR
[3] Cherednik (I.).— DAHA-Jones polynomials of torus knots, arXiv: 1406.3959 [math.QA] (2014). | DOI | MR
[4] Cherednik (I.) Jones polynomials of torus knots via DAHA, arXiv: 1111.6195v6 [math.QA] (2012). | DOI | MR
[5] Cherednik (I.) Double affine Hecke algebras, London Mathematical Society Lecture Note Series, 319, Cambridge University Press, Cambridge, (2006). | DOI
[6] Cherednik (I.), and Danilenko (I.).— DAHA and iterated torus knots, arXiv: 1408.4348 (2014). | DOI | MR
[7] Deligne (P.), and Gross (B.).— On the exceptional series, and its descendants, Comptes Rendus Acad. Sci. Paris, Ser I, 335 (2002), 877-881. | DOI | MR | Zbl
[8] Dunfield (N.), and Gukov (S.).— and J. Rasmussen, The superpolynomial for knot homologies, Experimental Mathematics, 15:2 (2006), 129-159. | DOI | MR | Zbl
[9] Garoufalidis (S.), and Morton (H.), and Vuong (T.).— The colored Jones polynomial of the trefoil, arXiv:1010.3147v4 [math.GT] (2010). | DOI | MR
[10] Gorsky (E.), and Negut (A.).— Refined knot invariants and Hilbert schemes, arXiv: 1304.3328v2 (2013). | DOI | MR
[11] Gu (J.), and Jockers (H.), and Klemm (A.), and Soroush (M.).— Knot invariants from topological recursion on augmentation varieties, arXiv: 1401.5095v1 [hep-th] (2014). | DOI | MR
[12] Gukov (S.), and Stosic (M.).— Homological algebra of knots and BPS states, arXiv: 1112.0030v1 [hep-th] (2011). | DOI
[13] Hadji (R.), and Morton (H.).— A basis for the full HOMFLY-PT skein of the annulus, Math. Proc. Camb. Philos. Soc. 141, p. 81-100 (2006). | DOI | MR | Zbl
[14] Khovanov (M.).— Triply-graded link homology and Hochschild homology of Soergel bimodules, International J. of Math. 18, p. 869–885 (2007). | DOI | MR | Zbl
[15] Khovanov (M.), and Rozansky (L.).— Matrix factorizations and link homology, Fundamenta Mathematicae, 199, p. 1-91 (2008). | DOI | MR | Zbl
[16] Khovanov (M.), and Rozansky (L.).— Matrix factorizations and link homology II, Geometry and Topology, 12, p. 1387-1425 (2008). | DOI | MR | Zbl
[17] Koike (K.).— On the decomposition of tensor products of the representations of the classical groups: by means of the universal character, Adv. Math. 74:1 p. 57–86 (1989). | DOI | MR
[18] Lin (X. S.), and Zheng (H.).— On the Hecke algebra and the colored HOMFLY-PT polynomial, Trans. Amer. Math. Soc. 362, p. 1-18 (2010), arXiv: math.QA/0601267 (2006). | DOI | MR
[19] Mariño (M.).— Chern-Simons theory and topological strings, Rev.Mod.Phys. 77 p. 675-720 (2005). | DOI | MR | Zbl
[20] Manchon (P.M.G.), and Morton (H.).— Geometrical relations and plethysms in the HOMFLY-PT skein of the annulus, J. London Math. Soc. 78, p. 305-328 (2008); arXiv: math.GT/0707.2851 (2007). | DOI | MR | Zbl
[21] Paul (C.), Borhade (P.), and Ramadevi (P.).— Composite invariants and unoriented topological string amplitudes, arXiv: 1003.5282v2 [hep-th] (2010). | DOI | MR
[22] Queffelec (H.), and Rose (D.).— The foam 2-category: a combinatorial formulation of Khovanov-Rozansky homology via categorical skew Howe duality, arXiv: 1405.5920 (2014). | DOI
[23] Rosso (M.), and Jones (V. F. R.).— On the invariants of torus knots derived from quantum groups, Journal of Knot Theory and its Ramifications, 2, p. 97-112 (1993). | DOI | MR | Zbl
[24] Rouquier (R.).— Khovanov-Rozansky homology and 2-braid groups, arXiv: 1203.5065 (2012). | DOI
[25] The Sage – Combinat community.— Sage – Combinat: enhancing Sage as a toolbox for computer exploration in algebraic combinatorics, Site: http://combinat.sagemath.org, (2008).
[26] Schiffmann (O.), and Vasserot (E.).— The elliptic Hall algebra, Cherednik Hecke algebras and Macdonald polynomials, Compos. Math. 147, p. 188-234 (2011). | DOI | MR | Zbl
[27] Stevan (S.).— Chern-Simons invariants of torus links, arXiv: 1003.2861v2 [hep-th] (2010). | DOI | MR | Zbl
[28] Webster (B.).— Knot invariants and higher representation theory, arXiv: 1309.3796 (2013). | DOI | Zbl
Cited by Sources: