logo AFST
Refined composite invariants of torus knots via DAHA
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 25 (2016) no. 2-3, pp. 433-471.

We define composite DAHA-superpolynomials of torus knots, depending on pairs of Young diagrams and generalizing the composite HOMFLY-PT polynomials in the skein theory of the annulus. We provide various examples. Our superpolynomials extend the DAHA-Jones (refined) polynomials and satisfy all standard symmetries of the DAHA-superpolynomials of torus knots. The latter are conjecturally related to the HOMFLY-PT homology. At the end, we construct two DAHA-hyperpolynomials extending the DAHA-Jones polynomials of type E closely related to the Deligne-Gross approach to the exceptional root systems; this theme is of experimental nature.

Nous définissons les DAHA-superpolynômes composites associés aux nœuds toriques, en fonction des paires de diagrammes de Young qui généralisent les polynômes de HOMFLY-PT composites dans la théorie de skein de l’anneau. Nous donnons divers exemples. Nos superpolynômes étendent les polynômes (raffinés) de DAHA-Jones et satisfont toutes les symétries standards des DAHA-superpolynômes des nœuds toriques. Ces derniers sont conjecturalement liés à l’homologie de HOMFLY-PT. À la fin, nous construisons deux DAHA-hyperpolynômes en étendant les polynômes de DAHA-Jones de type E. Ils sont étroitement liés à l’approche de Deligne-Gross des systèmes de racines exceptionnels ; ce thème est de nature expérimentale.

Published online:
DOI: 10.5802/afst.1501
Ivan Cherednik 1; Ross Elliot 2

1 Department of Mathematics, UNC Chapel Hill, North Carolina 27599, USA
2 California Institute of Technology, Pasadena, California 91125, USA
@article{AFST_2016_6_25_2-3_433_0,
     author = {Ivan Cherednik and Ross Elliot},
     title = {Refined composite invariants of torus knots via {DAHA}},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {433--471},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 25},
     number = {2-3},
     year = {2016},
     doi = {10.5802/afst.1501},
     mrnumber = {3530165},
     zbl = {1379.57008},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1501/}
}
TY  - JOUR
TI  - Refined composite invariants of torus knots via DAHA
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2016
DA  - 2016///
SP  - 433
EP  - 471
VL  - Ser. 6, 25
IS  - 2-3
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1501/
UR  - https://www.ams.org/mathscinet-getitem?mr=3530165
UR  - https://zbmath.org/?q=an%3A1379.57008
UR  - https://doi.org/10.5802/afst.1501
DO  - 10.5802/afst.1501
LA  - en
ID  - AFST_2016_6_25_2-3_433_0
ER  - 
%0 Journal Article
%T Refined composite invariants of torus knots via DAHA
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2016
%P 433-471
%V Ser. 6, 25
%N 2-3
%I Université Paul Sabatier, Toulouse
%U https://doi.org/10.5802/afst.1501
%R 10.5802/afst.1501
%G en
%F AFST_2016_6_25_2-3_433_0
Ivan Cherednik; Ross Elliot. Refined composite invariants of torus knots via DAHA. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 25 (2016) no. 2-3, pp. 433-471. doi : 10.5802/afst.1501. https://afst.centre-mersenne.org/articles/10.5802/afst.1501/

[1] Aiston (A.K.), and Morton (H.).— Idempotents of Hecke algebras of type A, J. Knot Theory Ramif. 7, p. 463-487; arXiv:math.QA/9702017 (1998). | DOI | MR | Zbl

[2] Chen (L.), and Chen (Q.).— Orthogonal Quantum Group Invariants Of Links, arXiv: 1007.1656v1 (2010). | DOI | MR

[3] Cherednik (I.).— DAHA-Jones polynomials of torus knots, arXiv: 1406.3959 [math.QA] (2014). | DOI | MR

[4] Cherednik (I.) Jones polynomials of torus knots via DAHA, arXiv: 1111.6195v6 [math.QA] (2012). | DOI | MR

[5] Cherednik (I.) Double affine Hecke algebras, London Mathematical Society Lecture Note Series, 319, Cambridge University Press, Cambridge, (2006). | DOI

[6] Cherednik (I.), and Danilenko (I.).— DAHA and iterated torus knots, arXiv: 1408.4348 (2014). | DOI | MR

[7] Deligne (P.), and Gross (B.).— On the exceptional series, and its descendants, Comptes Rendus Acad. Sci. Paris, Ser I, 335 (2002), 877-881. | DOI | MR | Zbl

[8] Dunfield (N.), and Gukov (S.).— and J. Rasmussen, The superpolynomial for knot homologies, Experimental Mathematics, 15:2 (2006), 129-159. | DOI | MR | Zbl

[9] Garoufalidis (S.), and Morton (H.), and Vuong (T.).— The SL 3 colored Jones polynomial of the trefoil, arXiv:1010.3147v4 [math.GT] (2010). | DOI | MR

[10] Gorsky (E.), and Negut (A.).— Refined knot invariants and Hilbert schemes, arXiv: 1304.3328v2 (2013). | DOI | MR

[11] Gu (J.), and Jockers (H.), and Klemm (A.), and Soroush (M.).— Knot invariants from topological recursion on augmentation varieties, arXiv: 1401.5095v1 [hep-th] (2014). | DOI | MR

[12] Gukov (S.), and Stosic (M.).— Homological algebra of knots and BPS states, arXiv: 1112.0030v1 [hep-th] (2011). | DOI

[13] Hadji (R.), and Morton (H.).— A basis for the full HOMFLY-PT skein of the annulus, Math. Proc. Camb. Philos. Soc. 141, p. 81-100 (2006). | DOI | MR | Zbl

[14] Khovanov (M.).— Triply-graded link homology and Hochschild homology of Soergel bimodules, International J. of Math. 18, p. 869–885 (2007). | DOI | MR | Zbl

[15] Khovanov (M.), and Rozansky (L.).— Matrix factorizations and link homology, Fundamenta Mathematicae, 199, p. 1-91 (2008). | DOI | MR | Zbl

[16] Khovanov (M.), and Rozansky (L.).— Matrix factorizations and link homology II, Geometry and Topology, 12, p. 1387-1425 (2008). | DOI | MR | Zbl

[17] Koike (K.).— On the decomposition of tensor products of the representations of the classical groups: by means of the universal character, Adv. Math. 74:1 p. 57–86 (1989). | DOI | MR

[18] Lin (X. S.), and Zheng (H.).— On the Hecke algebra and the colored HOMFLY-PT polynomial, Trans. Amer. Math. Soc. 362, p. 1-18 (2010), arXiv: math.QA/0601267 (2006). | DOI | MR

[19] Mariño (M.).— Chern-Simons theory and topological strings, Rev.Mod.Phys. 77 p. 675-720 (2005). | DOI | MR | Zbl

[20] Manchon (P.M.G.), and Morton (H.).— Geometrical relations and plethysms in the HOMFLY-PT skein of the annulus, J. London Math. Soc. 78, p. 305-328 (2008); arXiv: math.GT/0707.2851 (2007). | DOI | MR | Zbl

[21] Paul (C.), Borhade (P.), and Ramadevi (P.).— Composite invariants and unoriented topological string amplitudes, arXiv: 1003.5282v2 [hep-th] (2010). | DOI | MR

[22] Queffelec (H.), and Rose (D.).— The 𝔰𝔩 n foam 2-category: a combinatorial formulation of Khovanov-Rozansky homology via categorical skew Howe duality, arXiv: 1405.5920 (2014). | DOI

[23] Rosso (M.), and Jones (V. F. R.).— On the invariants of torus knots derived from quantum groups, Journal of Knot Theory and its Ramifications, 2, p. 97-112 (1993). | DOI | MR | Zbl

[24] Rouquier (R.).— Khovanov-Rozansky homology and 2-braid groups, arXiv: 1203.5065 (2012). | DOI

[25] The Sage – Combinat community.— Sage – Combinat: enhancing Sage as a toolbox for computer exploration in algebraic combinatorics, Site: http://combinat.sagemath.org, (2008).

[26] Schiffmann (O.), and Vasserot (E.).— The elliptic Hall algebra, Cherednik Hecke algebras and Macdonald polynomials, Compos. Math. 147, p. 188-234 (2011). | DOI | MR | Zbl

[27] Stevan (S.).— Chern-Simons invariants of torus links, arXiv: 1003.2861v2 [hep-th] (2010). | DOI | MR | Zbl

[28] Webster (B.).— Knot invariants and higher representation theory, arXiv: 1309.3796 (2013). | DOI | Zbl

Cited by Sources: