Notre étude montre les relations existant entre les ensembles poissoniens de lacets, les champs qu’ils définissent, les circuits euleriens, les revêtements galoisiens des graphes et les champs de jauges associés.
We investigate the relations between the Poissonnian loop ensembles, their occupation fields, non ramified Galois coverings of a graph, the associated gauge fields, and random Eulerian networks.
Mots clés : Free field, Markov processes, ‘Loop soups’, Eulerian circuits, homology
Yves Le Jan 1
@article{AFST_2017_6_26_2_401_0, author = {Yves Le Jan}, title = {Markov loops, coverings and fields}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {401--416}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 26}, number = {2}, year = {2017}, doi = {10.5802/afst.1538}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1538/} }
TY - JOUR AU - Yves Le Jan TI - Markov loops, coverings and fields JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2017 SP - 401 EP - 416 VL - 26 IS - 2 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1538/ DO - 10.5802/afst.1538 LA - en ID - AFST_2017_6_26_2_401_0 ER -
%0 Journal Article %A Yves Le Jan %T Markov loops, coverings and fields %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2017 %P 401-416 %V 26 %N 2 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1538/ %R 10.5802/afst.1538 %G en %F AFST_2017_6_26_2_401_0
Yves Le Jan. Markov loops, coverings and fields. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 26 (2017) no. 2, pp. 401-416. doi : 10.5802/afst.1538. https://afst.centre-mersenne.org/articles/10.5802/afst.1538/
[1] Non-backtracking loop soups and statistical mechanics on spin networks (2016) (https://arxiv.org/abs/1507.05065)
[2] Markov loops in discrete spaces, Probability and Statistical Physics in St. Petersburg. (Proceedings of Symposia in Pure Mathematics), Volume 91, American Mathematical Society, 2016, pp. 222-279
[3] Jacobian Tori Associated with a Finite Graph and Its Abelian Covering Graphs, Adv. Appl. Math., Volume 24 (2000) no. 2, pp. 89-110 | DOI
[4] The Brownian loop soup, Probab. Theory Relat. Fields, Volume 128 (2004) no. 4, pp. 565-588 | DOI
[5] Markov loops, determinants and Gaussian fields (2007) (https://arxiv.org/abs/math/0612112)
[6] Markov paths, loops and fields. École d’Été de Probabilités de Saint-Flour XXXVIII - 2008, Lecture Notes in Mathematics, 2026, Springer, 2012, viii+124 pages
[7] free field and Eulerian networks, J. Math. Soc. Japan, Volume 67 (2015) no. 4, pp. 1671-1680 | DOI
[8] Poisson ensembles of loops of one-dimensional diffusions (2014) (https://arxiv.org/abs/1302.3773)
[9] From loop clusters and random interlacement to the free field (2016) (https://arxiv.org/abs/1402.0298, to appear in Ann. Prob.)
[10] Algebraic Topology: An Introduction, Harbrace College Mathematics Series, Harcourt, Brace & World, Inc., 1967, xix+261 pages
[11] Gauge theories as a problem of constructive quantum field theory and statistical mechanics, Lecture Notes in Physics, 159, Springer, 1982, iii+181 pages
[12] Arbres, amalgames, , Astérisque, 46, Société Mathématique de France, 977, ix+189 pages
[13] Euclidean quantum field theory, Scuola intenazionale di Fisica ”Enrico Fermi”. XLV Corso., Academic Press, 1969, pp. 152-223
[14] On the spatial Markov property of soups of unoriented and oriented loops (1969) (https://arxiv.org/abs/1508.03696, to appear in Séminaire de de Probabilités)
[15] Appendix in Graphs on Surfaces and their Applications, by S.K. Lando and A.K. Zvonkin, Encyclopaedia of Mathematical Sciences, 141, Springer, 2004
Cité par Sources :