logo AFST

Functional SPDE with Multiplicative Noise and Dini Drift
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 26 (2017) no. 2, pp. 519-537.

Dans cet article, nous établissons l’existence, l’unicité et la non-explosion de la solution douce pour une classe d’équations aux dérivées partielles stochastiques semi-linéaires dont le bruit est multiplicatif et le drift satisfait la condition de Dini. Dans le cas de dimension finie et du temps de retard borné, nous montrons l’inégalité de Harnack logarithmique et une estimée de gradient dans L 2 pour la solution douce. Comme le semi-groupe Markovien est associé à la solution fonctionnelle de l’équation, nous devons étudier l’analyse sur l’espace des chemins des solutions définies sur l’intervalle du temps de retard.

Existence, uniqueness and non-explosion of the mild solution are proved for a class of semi-linear functional SPDEs with multiplicative noise and Dini continuous drifts. In the finite-dimensional and bounded time delay setting, the log-Harnack inequality and L 2 -gradient estimate are derived. As the Markov semigroup is associated to the functional solution of the equation, one needs to make analysis on the path space of the solution in the time interval of delay.

Publié le :
DOI : https://doi.org/10.5802/afst.1544
Classification : 60H15,  60B10
Mots clés : Functional SPDE, Dini continuity, time delay, log-Harnack inequality, gradient estimate
@article{AFST_2017_6_26_2_519_0,
     author = {Xing Huang and Feng-Yu Wang},
     title = {Functional {SPDE} with {Multiplicative} {Noise} and {Dini} {Drift}},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {519--537},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 26},
     number = {2},
     year = {2017},
     doi = {10.5802/afst.1544},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1544/}
}
Xing Huang; Feng-Yu Wang. Functional SPDE with Multiplicative Noise and Dini Drift. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 26 (2017) no. 2, pp. 519-537. doi : 10.5802/afst.1544. https://afst.centre-mersenne.org/articles/10.5802/afst.1544/

[1] Marc Arnaudon; Anton Thalmaier; Feng-Yu Wang Harnack inequality and heat kernel estimates on manifolds with curvature unbounded below, Bull. Sci. Math., Volume 130 (2006) no. 3, pp. 223-233 | Article

[2] Marc Arnaudon; Anton Thalmaier; Feng-Yu Wang Gradient estimates and Harnack inequalities on non-compact Riemannian manifolds, Stochastic Processes Appl., Volume 119 (2009) no. 10, pp. 3653-3670 | Article

[3] Marc Arnaudon; Anton Thalmaier; Feng-Yu Wang Equivalent Harnack and gradient inequalities for pointwise curvature lower bound, Bull. Sci. Math., Volume 138 (2014) no. 5, pp. 643-655 | Article

[4] Dominique Bakry; Ivan Gentil; Michel Ledoux Analysis and Geometry of Markov Diffusion Operators, Grundlehren der Mathematischen Wissenschaften, Volume 348, Springer, 2014, xx+552 pages

[5] Giuseppe Da Prato; Jerzy Zabczyk Stochastic Equations in Infinite Dimensions, Encyclopedia of Mathematics and Its Applications, Volume 44, Cambridge University Press, 1992, xviii+454 pages

[6] Abdelhadi Es-Sarhir; Max-K. von Renesse; Michael Scheutzow Harnack inequality for functional SDEs with bounded memory, Electron. Commun. Probab., Volume 14 (2009), pp. 560-565 (electronic only) | Article

[7] Martin Ondreját Uniqueness for stochastic evolution equations in Banach spaces, Diss. Math, Volume 426 (2004), pp. 1-63

[8] Claudia Prévôt; Michael Röckner A Concise Course on Stochastic Partial Differential Equations, Lecture Notes in Mathematics, Volume 1905, Springer, 2007, vi+144 pages

[9] Enrico Priola; Feng-Yu Wang Gradient estimates for diffusion semigroups with singular coefficients, J. Funct. Anal., Volume 236 (2006) no. 1, pp. 244-264 | Article

[10] Michael Röckner; Feng-Yu Wang Log-Harnack Inequality for Stochastic differential equations in Hilbert spaces and its consequences, Infin. Dimens. Anal. Quantum Probab. Relat. Top., Volume 13 (2010) no. 1, pp. 27-37 | Article

[11] Jinghai Shao; Feng-Yu Wang; Chenggui Yuan Harnack inequalities for stochastic (functional) differential equations with non-Lipschitzian coefficients, Electron. J. Probab., Volume 17 (2012) (Paper no 100, 18 pages, electronic only) | Article

[12] Feng-Yu Wang Harnack inequalities on manifolds with boundary and applications, J. Math. Pures Appl., Volume 94 (2010) no. 3, pp. 304-321 | Article

[13] Feng-Yu Wang Harnack inequality for SDE with multiplicative noise and extension to Neumann semigroup on nonconvex manifolds, Ann. Probab., Volume 39 (2011) no. 4, pp. 1449-1467 | Article

[14] Feng-Yu Wang Harnack inequalities for stochastic partial differential equations, SpringerBriefs in Mathematics, Springer, 2013, x+125 pages

[15] Feng-Yu Wang Analysis for Diffusion Processes on Riemannian Manifolds, Advanced Series on Statistical Science and Applied Probability, Volume 18, World Scientific, 2014, xii+379 pages

[16] Feng-Yu Wang Gradient estimates and applications for SDEs in Hilbert space with multiplicative noise and Dini continuous drift, J. Differ. Equations, Volume 260 (2016) no. 3, pp. 2792-2829 | Article

[17] Feng-Yu Wang; Tu-Sheng Zhang Gradient estimates for stochastic evolution equations with non-Lipschitz coefficients, J. Math. Anal. Appl., Volume 365 (2010) no. 1, pp. 1-11 | Article

[18] Toshio Yamada; Shinzo Watanabe On the uniqueness of solutions of stochastic differential equations, J. Math. Kyoto Univ., Volume 11 (1971), pp. 155-167 | Article