These notes collect the lectures given by the first author in Toulouse, April 2014, on the well-posedness theory for continuity and transport equation in metric measure spaces, summarizing the joint work appeared in Analysis and PDE. The last part of the notes covers also more recent developments, due to the second author, on diffusion operators on metric measure spaces.
Ces notes résument les leçons données à Toulouse en avril 2014 par le premier auteur sur le caractère bien ou mal posé des problèmes liés aux équations de continuité et de transport dans les espaces métriques mesurés, reprenant un travail commun publié dans Analysis and PDE. La dernière partie des notes couvre également des développements plus récents, dus au second auteur, sur les opérateurs de diffusion dans les espaces métriques mesurés.
Luigi Ambrosio 1; Dario Trevisan 2
@article{AFST_2017_6_26_4_729_0, author = {Luigi Ambrosio and Dario Trevisan}, title = {Lecture notes on the {DiPerna{\textendash}Lions} theory in abstract measure spaces}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {729--766}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 26}, number = {4}, year = {2017}, doi = {10.5802/afst.1551}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1551/} }
TY - JOUR AU - Luigi Ambrosio AU - Dario Trevisan TI - Lecture notes on the DiPerna–Lions theory in abstract measure spaces JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2017 SP - 729 EP - 766 VL - 26 IS - 4 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1551/ DO - 10.5802/afst.1551 LA - en ID - AFST_2017_6_26_4_729_0 ER -
%0 Journal Article %A Luigi Ambrosio %A Dario Trevisan %T Lecture notes on the DiPerna–Lions theory in abstract measure spaces %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2017 %P 729-766 %V 26 %N 4 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1551/ %R 10.5802/afst.1551 %G en %F AFST_2017_6_26_4_729_0
Luigi Ambrosio; Dario Trevisan. Lecture notes on the DiPerna–Lions theory in abstract measure spaces. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 26 (2017) no. 4, pp. 729-766. doi : 10.5802/afst.1551. https://afst.centre-mersenne.org/articles/10.5802/afst.1551/
[1] Maximality of infinite-dimensional Dirichlet forms and Høegh-Krohn’s model of quantum fields, Ideas and methods in quantum and statistical physics (Oslo, 1988), Cambridge University Press, 1992, pp. 301-330 | Zbl
[2] Transport equation and Cauchy problem for vector fields, Invent. Math., Volume 158 (2004) no. 2, pp. 227-260 | DOI | Zbl
[3] Transport equation and Cauchy problem for non-smooth vector fields, Calculus of Variations and Non-Linear Partial Differential Equations (CIME Series, Cetraro, 2005) (Lecture Notes in Mathematics), Volume 1927, Springer, 2008, pp. 1-42 | Zbl
[4] Existence, uniqueness, stability and differentiability properties of the flow associated to weakly differentiable vector fields, Transport equations and multi-D hyperbolic conservation laws (Lecture Notes of the Unione Matematica Italiana), Volume 5, Springer, 2008, pp. 3-57 | Zbl
[5] Continuity equations and ODE flows with non-smooth velocity, Proc. R. Soc. Edinb., Sect. A, Math., Volume 144 (2014) no. 6, pp. 1191-1244 | DOI | Zbl
[6] On flows associated to Sobolev vector fields in Wiener spaces: an approach à la DiPerna-Lions, J. Funct. Anal., Volume 256 (2009) no. 1, pp. 179-214 | DOI | Zbl
[7] Gradient flows in metric spaces and in the space of probability measures, Lectures in Mathematics, ETH Zürich, Birkhäuser, 2005, vii+333 pages | Zbl
[8] Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below, Invent. Math., Volume 195 (2014) no. 2, pp. 289-391 | DOI | Zbl
[9] Metric measure spaces with Riemannian Ricci curvature bounded from below, Duke Math. J., Volume 163 (2014) no. 7, pp. 1405-1490 | DOI | Zbl
[10] Existence and stability for Fokker-Planck equations with log-concave reference measure, Probab. Theory Relat. Fields, Volume 145 (2009) no. 3-4, pp. 517-564 | DOI | Zbl
[11] Well posedness of Lagrangian flows and continuity equations in metric measure spaces, Anal. PDE, Volume 7 (2014) no. 5, pp. 1179-1234 | DOI | Zbl
[12] On Sobolev and logarithmic Sobolev inequalities for Markov semigroups, New trends in stochastic analysis (Charingworth, 1994) (World Sci. Publ.), River Edge, 1997, pp. 43-75
[13] Analysis and Geometry of Markov Diffusion Operators, Grundlehren der Mathematischen Wissenschaften, 348, Springer, 2014, xx+552 pages | Zbl
[14] Structure of measures in Lipschitz differentiability spaces, J. Am. Math. Soc., Volume 28 (2015) no. 2, pp. 421-482 | DOI | Zbl
[15] A Saint-Venant principle for Dirichlet forms on discontinuous media, Ann. Mat. Pura Appl., Volume 169 (1995), pp. 125-181 | DOI | Zbl
[16] Differentiable measures and the Malliavin calculus, Mathematical Surveys and Monographs, 164, American Mathematical Society, 2010, xv+488 pages | Zbl
[17] Dirichlet forms and analysis on Wiener space, de Gruyter Studies in Mathematics, 14, De Gruyter, 1991, x+325 pages | Zbl
[18] On some analogy between different approaches to first order PDE’s with non smooth coefficients, Adv. Math. Sci. Appl., Volume 6 (1996) no. 2, pp. 689-703 | Zbl
[19] Non unicité des solutions bornées pour un champ de vecteurs en dehors d’un hyperplan, C. R., Math., Acad. Sci. Paris, Volume 337 (2003) no. 4, pp. 249-252 | DOI | Zbl
[20] Sobolev and BV spaces on metric measure spaces via derivations and integration by parts (2014) (https://arxiv.org/abs/1409.5620)
[21] Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., Volume 98 (1989) no. 3, pp. 511-547 | DOI | Zbl
[22] Uniqueness and non-uniqueness of semigroups generated by singular diffusion operators, Lecture Notes in Mathematics, 1718, Springer, 1999, viii+262 pages | Zbl
[23] Markov processes, Characterization and convergence, Wiley Series in Probability and Mathematical Statistics, John Wiley & Sons, 1986, x+534 pages | Zbl
[24] Existence and uniqueness of martingale solutions for SDEs with rough or degenerate coefficients, J. Funct. Anal., Volume 254 (2008) no. 1, p. 109-53 | DOI | Zbl
[25] Dirichlet forms and symmetric Markov processes, de Gruyter Studies in Mathematics, 19, De Gruyter, 2011, x+489 pages | Zbl
[26] Nonsmooth differential geometry – An approach tailored for spaces with Ricci curvature bounded from below (2014) (https://arxiv.org/abs/1407.0809)
[27] Renormalized solutions of some transport equations with partially velocities and applications, Ann. Mat. Pura Appl., Volume 183 (2004) no. 1, pp. 97-130 | DOI | Zbl
[28] Existence and uniqueness of solutions to Fokker-Planck type equations with irregular coefficients, Commun. Partial Differ. Equations, Volume 33 (2008) no. 7, pp. 1272-1317 | DOI | Zbl
[29] Introduction to the theory of (non-symmetric) Dirichlet forms, Universitext, Springer, 1992, viii+209 pages | Zbl
[30] Derivations and Alberti representations, Adv. Math., Volume 293 (2016), pp. 436-528 | DOI | Zbl
[31] Monotone operators in Banach space and nonlinear partial differential equations, Mathematical Surveys and Monographs, 49, American Mathematical Society, 1997, xi+278 pages | Zbl
[32] Decomposition of solenoidal vector charges into elementary solenoids and the structure of normal one-dimensional currents, St. Petersbg. Math. J., Volume 5 (1994) no. 4, pp. 841-867 | Zbl
[33] The theory of generalized Dirichlet forms and its applications in analysis and stochastics, Mem. Am. Math. Soc., Volume 678 (1999), pp. 1-101 | Zbl
[34] A dual characterization of length spaces with application to Dirichlet metric spaces, Stud. Math., Volume 198 (2010) no. 3, pp. 221-233 | DOI | Zbl
[35] Multidimensional diffusion processes, Classics in Mathematics, Springer, 2006, xii+338 pages | Zbl
[36] Analysis on local Dirichlet spaces. II. Upper Gaussian estimates for the fundamental solutions of parabolic equations, Osaka J. Math., Volume 32 (1995) no. 2, pp. 275-312 | Zbl
[37]
(in preparation)[38] Well-posedness of Diffusion Processes in Metric Measure Spaces, Scuola Normale Superiore (Italy) (2014) (Ph. D. Thesis)
[39] Lagrangian flows driven by fields in Wiener spaces, Probab. Theory Relat. Fields, Volume 163 (2015) no. 1-2, pp. 123-147 | DOI | Zbl
[40] Well-posedness for multidimensional diffusion processes with weakly differentiable coefficients, Electron. J. Probab., Volume 21 (2016) (Paper No. 22, 41 p.) | DOI | Zbl
[41] Lipschitz algebras, World Scientific, 1999, xiii+233 pages | Zbl
[42] Lipschitz algebras and derivations. II: Exterior differentiation, J. Funct. Anal., Volume 178 (2000) no. 1, pp. 64-112 | DOI | Zbl
[43] On the uniqueness of solutions of stochastic differential equations, J. Math. Kyoto Univ., Volume 11 (1971), pp. 155-167 | DOI | Zbl
Cited by Sources: