This paper is devoted to the Lin–Ni conjecture for a semi-linear elliptic equation with a super-linear, sub-critical nonlinearity and homogeneous Neumann boundary conditions. We establish a new rigidity result, that is, we prove that the unique positive solution is a constant if the parameter of the problem is below an explicit bound that we relate with an optimal constant for a Gagliardo–Nirenberg–Sobolev interpolation inequality and also with an optimal Keller–Lieb–Thirring inequality. Our results are valid in a sub-linear regime as well. The rigidity bound is obtained by nonlinear flow methods inspired by recent results on compact manifolds, which unify nonlinear elliptic techniques and the carré du champ method in semi-group theory. Our method requires the convexity of the domain. It relies on integral quantities, takes into account spectral estimates and provides improved functional inequalities.
Cet article est consacré à la conjecture de Lin–Ni pour une équation semi-linéaire elliptique avec non-linéarité super-linéaire, sous-critique et des conditions de Neumann homogènes. Nous établissons un résultat de rigidité, c’est-à-dire nous prouvons que la seule solution positive est constante si le paramètre du problème est en dessous d’une borne explicite, reliée à la constante optimale d’une inégalité d’interpolation de Gagliardo–Nirenberg–Sobolev et aussi à une inégalité de Keller–Lieb–Thirring optimale. Nos résultats sont également valides dans un régime sous-linéaire. La borne de rigidité est obtenue par des méthodes de flots non-linéaires inspirées de résultats récents sur les variétés compactes, qui unifient des techniques d’équations elliptiques non-linéaires et la méthode du carré du champ en théorie des semi-groupes. Notre méthode requiert la convexité du domaine. Elle repose sur des quantités intégrales, prend en compte des estimations spectrales et fournit des inégalités améliorées.
Keywords: semilinear elliptic equations, Lin–Ni conjecture, Sobolev inequality, interpolation, Gagliardo–Nirenberg inequalities, Keller–Lieb–Thirring inequality, optimal constants, rigidity results, uniqueness, carré du champ method, CD($\rho $, $N$) condition, bifurcation, multiplicity, generalized entropy methods, heat flow, nonlinear diffusion, spectral gap inequality, Poincaré inequality, improved inequalities, non-Lipschitz nonlinearity, compact support principle
Mot clés : Inégalités fonctionnelles
Jean Dolbeault 1; Michał Kowalczyk 2
@article{AFST_2017_6_26_4_949_0, author = {Jean Dolbeault and Micha{\l} Kowalczyk}, title = {Uniqueness and rigidity in nonlinear elliptic equations, interpolation inequalities, and spectral estimates}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {949--977}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 26}, number = {4}, year = {2017}, doi = {10.5802/afst.1557}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1557/} }
TY - JOUR AU - Jean Dolbeault AU - Michał Kowalczyk TI - Uniqueness and rigidity in nonlinear elliptic equations, interpolation inequalities, and spectral estimates JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2017 SP - 949 EP - 977 VL - 26 IS - 4 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1557/ DO - 10.5802/afst.1557 LA - en ID - AFST_2017_6_26_4_949_0 ER -
%0 Journal Article %A Jean Dolbeault %A Michał Kowalczyk %T Uniqueness and rigidity in nonlinear elliptic equations, interpolation inequalities, and spectral estimates %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2017 %P 949-977 %V 26 %N 4 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1557/ %R 10.5802/afst.1557 %G en %F AFST_2017_6_26_4_949_0
Jean Dolbeault; Michał Kowalczyk. Uniqueness and rigidity in nonlinear elliptic equations, interpolation inequalities, and spectral estimates. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 26 (2017) no. 4, pp. 949-977. doi : 10.5802/afst.1557. https://afst.centre-mersenne.org/articles/10.5802/afst.1557/
[1] Interpolation between logarithmic Sobolev and Poincaré inequalities, Commun. Math. Sci., Volume 5 (2007) no. 4, pp. 971-979 | DOI | Zbl
[2] Hypercontractivité de semi-groupes de diffusion, C. R. Acad. Sci., Paris, Sér. I, Volume 299 (1984) no. 15, pp. 775-778 | MR | Zbl
[3] Inégalités de Sobolev pour un semi-groupe symétrique, C. R. Acad. Sci., Paris, Sér. I, Volume 301 (1985) no. 8, pp. 411-413 | MR | Zbl
[4] Sobolev inequalities and Myers’s diameter theorem for an abstract Markov generator, Duke Math. J., Volume 85 (1996) no. 1, pp. 253-270 | DOI | MR | Zbl
[5] Nodal solutions for a sublinear elliptic equation, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods, Volume 52 (2003) no. 1, pp. 219-237 | DOI | MR | Zbl
[6] A generalized Poincaré inequality for Gaussian measures, Proc. Am. Math. Soc., Volume 105 (1989) no. 2, pp. 397-400 | MR | Zbl
[7] Nonlinear elliptic equations on compact Riemannian manifolds and asymptotics of Emden equations, Invent. Math., Volume 106 (1991) no. 3, pp. 489-539 erratum in ibid. 112 (1993), no. 2, p. 445 | DOI | MR | Zbl
[8] Symmetry in an elliptic problem and the blow-up set of a quasilinear heat equation, Commun. Partial Differ. Equations, Volume 21 (1996) no. 3-4, pp. 507-520 | DOI | MR | Zbl
[9] Uniqueness of positive solutions of in , Arch. Ration. Mech. Anal., Volume 142 (1998) no. 2, pp. 127-141 | DOI | MR | Zbl
[10] Des équations à diffusion rapide aux inégalités de Sobolev sur les modèles de la géométrie, Université Paul Sabatier Toulouse 3 (France) (2005) (Ph. D. Thesis)
[11] Improved Gagliardo-Nirenberg-Sobolev inequalities on manifolds with positive curvature, J. Funct. Anal., Volume 254 (2008) no. 3, pp. 593-611 | DOI | MR | Zbl
[12] A scenario for symmetry breaking in Caffarelli-Kohn-Nirenberg inequalities, J. Numer. Math., Volume 20 (2013) no. 3-4, p. 233--249 | Zbl
[13] Branches of non-symmetric critical points and symmetry breaking in nonlinear elliptic partial differential equations, Nonlinearity, Volume 27 (2014) no. 3, pp. 435-465 http://stacks.iop.org/0951-7715/27/i=3/a=435 | DOI | Zbl
[14] Sharp Interpolation Inequalities on the Sphere: New Methods and Consequences, Chin. Ann. Math., Ser. B, Volume 34 (2013) no. 1, pp. 99-112 | DOI | Zbl
[15] Improved interpolation inequalities on the sphere, Discrete Contin. Dyn. Syst., Ser. S, Volume 7 (2014) no. 4, pp. 695-724 | DOI | Zbl
[16] Spectral estimates on the sphere, Anal. PDE, Volume 7 (2014) no. 2, pp. 435-460 | DOI | Zbl
[17] Spectral properties of Schrödinger operators on compact manifolds: Rigidity, flows, interpolation and spectral estimates, C. R., Math., Acad. Sci. Paris, Volume 351 (2013) no. 11–12, pp. 437 -440 | DOI | Zbl
[18] One-dimensional Gagliardo–Nirenberg–Sobolev inequalities: remarks on duality and flows, J. Lond. Math. Soc., Volume 90 (2014) no. 2, pp. 525-550 | DOI | Zbl
[19] Nonlinear flows and rigidity results on compact manifolds, J. Funct. Anal., Volume 267 (2014) no. 5, pp. 1338 -1363 | DOI | Zbl
[20] Keller-Lieb-Thirring inequalities for Schrödinger operators on cylinders, C. R., Math., Acad. Sci. Paris, Volume 353 (2015) no. 9, pp. 813-818 | DOI | MR | Zbl
[21] Rigidity versus symmetry breaking via nonlinear flows on cylinders and Euclidean spaces, Invent. Math., Volume 206 (2016) no. 2, pp. 397-440 | DOI | MR | Zbl
[22] Symmetry of optimizers of the Caffarelli-Kohn-Nirenberg inequalities, 2016 (https://hal.archives-ouvertes.fr/hal-01286546 and http://arxiv.org/abs/1603.03574)
[23] Interpolation inequalities on the sphere: linear vs. nonlinear flows, Ann. Fac. Sci. Toulouse, Volume 26 (2017) no. 2, pp. 351-379 | DOI | Zbl
[24] Radial symmetry and symmetry breaking for some interpolation inequalities, Calc. Var. Partial Differ. Equ., Volume 42 (2011), pp. 461-485 | DOI | Zbl
[25] On the Bakry-Emery criterion for linear diffusions and weighted porous media equations, Commun. Math. Sci., Volume 6 (2008) no. 2, pp. 477-494 | DOI | Zbl
[26] The Wasserstein gradient flow of the Fisher information and the quantum drift-diffusion equation, Arch. Ration. Mech. Anal., Volume 194 (2009) no. 1, pp. 133-220 | DOI | MR | Zbl
[27] Global and local behavior of positive solutions of nonlinear elliptic equations, Commun. Pure Appl. Math., Volume 34 (1981) no. 4, pp. 525-598 | DOI | MR | Zbl
[28] Elliptic problems in nonsmooth domains, Monographs and Studies in Mathematics, 24, Pitman Publishing (Advanced Publishing Program), Boston, MA, 1985, xiv+410 pages | MR | Zbl
[29] Logarithmic Sobolev inequalities, Am. J. Math., Volume 97 (1975) no. 4, pp. 1061-1083 | DOI | MR | Zbl
[30] Uniqueness for the solution of semi-linear elliptic Neumann problems in , Commun. Pure Appl. Anal., Volume 7 (2008) no. 5, pp. 1269-1273 | DOI | MR | Zbl
[31] Lower bounds and isoperimetric inequalities for eigenvalues of the Schrödinger equation, J. Math. Phys., Volume 2 (1961), pp. 262-266 | DOI | MR | Zbl
[32] Between Sobolev and Poincaré, Geometric aspects of functional analysis (Lecture Notes in Mathematics), Volume 1745, Springer, Berlin, 2000, pp. 147-168 | MR | Zbl
[33] Un théorème d’annulation pour des équations elliptiques non linéaires sur des variétés riemanniennes compactes, C. R. Acad. Sci., Paris, Sér. I, Volume 320 (1995) no. 11, pp. 1337-1342 | MR | Zbl
[34] A class of nonlinear conservative elliptic equations in cylinders, Ann. Scuola Norm. Sup. Pisa Cl. Sci., Volume 26 (1998) no. 2, pp. 249-283 | MR | Zbl
[35] Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities, Studies in mathematical physics. Essays in honor of Valentine Bargmann, Princeton University Press, 1976, pp. 269-303 | Zbl
[36] On the diffusion coefficient of a semilinear Neumann problem, Calculus of variations and partial differential equations (Trento, 1986) (Lecture Notes in Mathematics), Volume 1340, Springer, Berlin, 1988, pp. 160-174 | DOI | MR | Zbl
[37] Large amplitude stationary solutions to a chemotaxis system, J. Differ. Equations, Volume 72 (1988) no. 1, pp. 1-27 | DOI | MR | Zbl
[38] Global branches of non-radially symmetric solutions to a semilinear Neumann problem in a disk, J. Funct. Anal., Volume 256 (2009) no. 3, pp. 747-776 | DOI | MR | Zbl
[39] Global branch from the second eigenvalue for a semilinear Neumann problem in a ball, J. Differ. Equations, Volume 249 (2010) no. 8, pp. 1853-1870 http/www.sciencedirect.com/science/article/pii/S0022039610002469 | DOI | Zbl
[40] Diffusion, cross-diffusion, and their spike-layer steady states, Notices Am. Math. Soc., Volume 45 (1998) no. 1, pp. 9-18 | MR | Zbl
[41] On the Neumann problem for some semilinear elliptic equations and systems of activator-inhibitor type, Trans. Am. Math. Soc., Volume 297 (1986) no. 1, pp. 351-368 | DOI | MR | Zbl
[42] A strong maximum principle and a compact support principle for singular elliptic inequalities, J. Math. Pures Appl., Volume 78 (1999) no. 8, pp. 769-789 | DOI | MR | Zbl
[43] Global solution branches of two-point boundary value problems, Lecture Notes in Mathematics, 1458, Springer, 1990, xx+141 pages | MR | Zbl
[44] Semilinear Neumann boundary value problems on a rectangle, Trans. Am. Math. Soc., Volume 354 (2002) no. 8, p. 3117-3154 (electronic) | DOI | MR | Zbl
[45] Global bifurcation of steady-state solutions, J. Differ. Equations, Volume 39 (1981) no. 2, pp. 269-290 | DOI | MR | Zbl
[46] Optimal transport, Grundlehren der Mathematischen Wissenschaften, 338, Springer, 2009, xxii+973 pages (Old and new) | DOI | MR | Zbl
[47] On Lin-Ni’s conjecture in convex domains, Proc. Lond. Math. Soc., Volume 102 (2011) no. 6, pp. 1099-1126 | DOI | MR | Zbl
[48] Uniqueness and a priori estimates for some nonlinear elliptic Neumann equations in , Pac. J. Math., Volume 221 (2005) no. 1, pp. 159-165 | DOI | MR | Zbl
[49] Asymptotic behaviors of a class of -Laplacian Neumann problems with large diffusion, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods, Volume 69 (2008) no. 8, pp. 2496-2524 | DOI | MR | Zbl
[50] Uniqueness results through a priori estimates. I. A three-dimensional Neumann problem, J. Differ. Equations, Volume 154 (1999) no. 2, pp. 284-317 | DOI | MR | Zbl
Cited by Sources: