Large scale ocean models beyond the traditional approximation
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 26 (2017) no. 4, pp. 1029-1049.

Ce manuscrit retrace un cours donné par A. Rousseau en février 2014 à Toulouse dans le cadre du labex CIMI. Il s’agit de donner un aperçu, et de questionner, les modèles traditionnellement utilisés pour l’océanographie à grande échelle (qu’il s’agisse de modèles 2D ou 3D). En partant des équations complètes (conservation de la masse et de la quantité de mouvement), on explique comment (à partir d’approximations dont on donne les justifications physiques) on parvient à construire des modèles plus simples qui permettent une implémentation logicielle réaliste. Une focalisation particulière est effectuée sur l’approximation dite traditionnelle qui consiste à négliger une partie des termes de la force de Coriolis.

This work corresponds to classes given by A. Rousseau in February 2014 in Toulouse, in the framework of the CIMI labex. The objective is to describe and question the models that are traditionaly used for large scale oceanography, whether in 2D or 3D. Starting from fundamental equations (mass and momentum conservation), it is explained how (thanks to approximations for which we provide justifications) one can build simpler models that allow a realistic numerical implementation. We particularly focus on the so-called traditional approximation that neglects part of the Coriolis force.

Publié le :
DOI : 10.5802/afst.1559

Carine Lucas 1 ; James C. McWilliams 2 ; Antoine Rousseau 3

1 MAPMO UMR CNRS 7349 - Fédération Denis Poisson FR CNRS 2964 Université d’Orléans F-45067 Orléans cedex 2, France
2 Dept. of Atmospheric and Oceanic Sciences University of California, Los Angeles (UCLA) Mathematical Sciences Building, Room 7983 Los Angeles, CA 90095-1565, USA
3 Inria Team LEMON and UMR-5149 IMAG, 860 rue Saint-Priest, 34095 Montpellier Cedex 5, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AFST_2017_6_26_4_1029_0,
     author = {Carine Lucas and James C. McWilliams and Antoine Rousseau},
     title = {Large scale ocean models beyond the traditional approximation},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {1029--1049},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 26},
     number = {4},
     year = {2017},
     doi = {10.5802/afst.1559},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1559/}
}
TY  - JOUR
AU  - Carine Lucas
AU  - James C. McWilliams
AU  - Antoine Rousseau
TI  - Large scale ocean models beyond the traditional approximation
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2017
SP  - 1029
EP  - 1049
VL  - 26
IS  - 4
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1559/
DO  - 10.5802/afst.1559
LA  - en
ID  - AFST_2017_6_26_4_1029_0
ER  - 
%0 Journal Article
%A Carine Lucas
%A James C. McWilliams
%A Antoine Rousseau
%T Large scale ocean models beyond the traditional approximation
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2017
%P 1029-1049
%V 26
%N 4
%I Université Paul Sabatier, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1559/
%R 10.5802/afst.1559
%G en
%F AFST_2017_6_26_4_1029_0
Carine Lucas; James C. McWilliams; Antoine Rousseau. Large scale ocean models beyond the traditional approximation. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 26 (2017) no. 4, pp. 1029-1049. doi : 10.5802/afst.1559. https://afst.centre-mersenne.org/articles/10.5802/afst.1559/

[1] Alfred J. Bourgeois; J.Thomas Beale Validity of the Quasigeostrophic Model for Large-Scale Flow in the Atmosphere and Ocean, SIAM J. Math. Anal., Volume 25 (1994) no. 4, pp. 1023-1068 http://link.aip.org/link/?SJM/25/1023/1 | DOI | Zbl

[2] Joseph Valentin Boussinesq Théorie analytique de la chaleur mise en harmonie avec la thermodynamique et avec la théorie mécanique de la lumière, Gauthier-Villars, 1903 | Zbl

[3] Alewyn P. Burger The potential vorticity equation: from planetary to small scale, Tellus A, Volume 43 (1991) no. 3, pp. 191-197 | DOI

[4] Chongsheng Cao; Edriss S. Titi Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics, Ann. Math., Volume 166 (2007) no. 1, pp. 245-267 | DOI | Zbl

[5] Carl Eckart Hydrodynamics of oceans and atmospheres, Pergamon Press, 1960, xi+290 pages | MR | Zbl

[6] Pedro F. Embid; Andrew J. Majda Low Froude number limiting dynamics for stably stratified flow with small or finite Rossby numbers, Geophysical and Astrophysical Fluid Dynamics, Volume 87 (1998) no. 1-2, pp. 1-50 | DOI

[7] T. Gerkema; J. T. F. Zimmerman; L. R. M. Maas; H. van Haren Geophysical and astrophysical fluid dynamics beyond the traditional approximation, Rev. Geophys., Volume 46 (2008) no. 2, RG2004 pages | DOI

[8] Keith Julien; Edgar Knobloch; Ralph Milliff; Joseph Werne Generalized quasi-geostrophy for spatially anisotropic rotationally constrained flows, Journal of Fluid Mechanics, Volume 555 (2006), pp. 233-274 | DOI

[9] Carine Lucas; James C. McWilliams; Antoine Rousseau On nontraditional quasi-geostrophic equations, ESAIM, Math. Model. Numer. Anal., Volume 51 (2017) no. 2, pp. 427-442 | DOI | Zbl

[10] Carine Lucas; Madalina Petcu; Antoine Rousseau Quasi-hydrostatic primitive equations for ocean global circulation models, Chin. Ann. Math., Ser. B, Volume 31 (2010) no. 6, pp. 939-952 | DOI | Zbl

[11] Carine Lucas; Antoine Rousseau New Developments and Cosine Effect in the Viscous Shallow Water and Quasi-Geostrophic Equations, Multiscale Model. Simul., Volume 7 (2008) no. 2, pp. 796-813 | DOI | Zbl

[12] Joseph Oliger; Arne Sundström Theoretical and practical aspects of some initial boundary value problems in fluid dynamics, SIAM J. Appl. Math., Volume 35 (1978) no. 3, pp. 419-446 | DOI | Zbl

[13] Madalina Petcu; Roger M. Temam; Mohammed Ziane Some mathematical problems in geophysical fluid dynamics, Handbook of Numerical Analysis. Special Issue on Computational Methods for the Ocean and the Atmosphere (P.G. Ciarlet, ed.), Elsevier, 2009, pp. 577-750

[14] Norman A. Phillips The equations of motion for a shallow rotating atmosphere and the “traditional approximation”, Journal of the Atmospheric Sciences, Volume 23 (1966) no. 5, pp. 626-628 | DOI

[15] Norman A. Phillips Reply (to George Veronis), Journal of the Atmospheric Sciences, Volume 25 (1968) no. 6, pp. 1155-1157 | DOI

[16] Antoine Rousseau; Roger M. Temam; Joseph Tribbia The 3D Primitive Equations in the absence of viscosity: Boundary conditions and well-posedness in the linearized case, J. Math. Pures Appl., Volume 89 (2008), pp. 297-319 http://hal.inria.fr/inria-00179961/fr/ | DOI | Zbl

[17] Antoine Rousseau; Roger M. Temam; Joseph Tribbia Boundary value problems for the inviscid primitive equations in limited domains, Handbook of Numerical Analysis, Special volume on Computational Methods for the Oceans and the Atmosphere (P.G. Ciarlet, ed.), Elsevier, 2009, pp. 481-575 http://hal.inria.fr/inria-00324224/fr/ | DOI

[18] Roger M. Samelson The Theory of Large-Scale Ocean Circulation, Cambridge University Press, 2011, xiii+193 pages | Zbl

[19] Andrew L. Stewart; Paul J. Dellar Multilayer shallow water equations with complete Coriolis force. Part 1. Derivation on a non-traditional beta-plane, Journal of Fluid Mechanics, Volume 651 (2010), pp. 387-413 http://journals.cambridge.org/article_S0022112009993922 | DOI

[20] Roger M. Temam; Joseph Tribbia Open boundary conditions for the primitive and Boussinesq equations, Journal of the Atmospheric Sciences, Volume 60 (2003) no. 21, pp. 2647-2660 | DOI | MR

[21] George Veronis Comments on Phillips’ proposed simplification of the equations of motion for a shallow rotating atmosphere, Journal of the Atmospheric Sciences, Volume 25 (1968) no. 6, pp. 1154-1155 | DOI

[22] Roald K. Wangsness Comments on “the equations of motion for a shallow rotating atmosphere and the ‘traditionnal approximation’ ”, Journal of the Atmospheric Sciences, Volume 27 (1970) no. 3, pp. 504-506 | DOI

[23] A. A. White; B. J. Hoskins; I. Roulstone; A. Staniforth Consistent approximate models of the global atmosphere: shallow, deep, hydrostatic, quasi-hydrostatic and non-hydrostatic, Q. J. R. Meteorol. Soc., Volume 131 (2005), pp. 2081-2107 | DOI

Cité par Sources :