Soit le groupe dérivé du groupe de tresses . On montre que pour , ce qui répond à une question posée par Vladimir Lin.
Let be the commutator subgroup of the braid group . We prove that for . This answers a question asked by Vladimir Lin.
Accepté le :
Publié le :
Stepan Yu. Orevkov 1
@article{AFST_2017_6_26_5_1137_0, author = {Stepan Yu. Orevkov}, title = {Automorphism group of the commutator subgroup of the braid group}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {1137--1161}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 26}, number = {5}, year = {2017}, doi = {10.5802/afst.1562}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1562/} }
TY - JOUR AU - Stepan Yu. Orevkov TI - Automorphism group of the commutator subgroup of the braid group JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2017 SP - 1137 EP - 1161 VL - 26 IS - 5 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1562/ DO - 10.5802/afst.1562 LA - en ID - AFST_2017_6_26_5_1137_0 ER -
%0 Journal Article %A Stepan Yu. Orevkov %T Automorphism group of the commutator subgroup of the braid group %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2017 %P 1137-1161 %V 26 %N 5 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1562/ %R 10.5802/afst.1562 %G en %F AFST_2017_6_26_5_1137_0
Stepan Yu. Orevkov. Automorphism group of the commutator subgroup of the braid group. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 26 (2017) no. 5, pp. 1137-1161. doi : 10.5802/afst.1562. https://afst.centre-mersenne.org/articles/10.5802/afst.1562/
[1] Theory of braids, Ann. Math., Volume 48 (1946), pp. 101-126 | DOI
[2] A new approach to the word and conjugacy problems in the braid groups, Adv. Math., Volume 139 (1998) no. 2, pp. 322-353 | DOI
[3] Abelian and solvable subgroups of the mapping class group, Duke Math. J., Volume 50 (1983), pp. 1107-1120 | DOI
[4] The solution to a conjecture of Tits on the subgroup generated by the squares of the generators of an Artin group, Invent. Math., Volume 145 (2001) no. 1, pp. 19-36 | DOI
[5] The automorphism groups of the braid groups, Am. J. Math., Volume 103 (1981), pp. 1151-1169 | DOI
[6] Sur les transformations périodiques de la surface de sphère, Fundamenta Math., Volume 22 (1934), pp. 28-41 | DOI
[7] Representation theory. A first course, Graduate Texts in Mathematics, 129, Springer, 1991, xv+551 pages
[8] The cyclic sliding operation in Garside groups, Math. Z., Volume 265 (2010) no. 1, pp. 85-114 | DOI
[9] The th root of a braid is unique up conjugacy, Algebr. Geom. Topol., Volume 3 (2003), pp. 1103-1118 | DOI
[10] On the structure of the centralizer of a braid, Ann. Sci. Éc. Norm. Supér., Volume 37 (2004) no. 5, pp. 729-757 | DOI
[11] Algebraic equations with continuous coefficients and some problems of the algebraic theory of braids, Math. USSR-Sbornik, Volume 7 (1969), pp. 569-596 | DOI
[12] Subgroups of Teichmüller modular groups, Translations of Mathematical Monographs, 115, American Mathematical Society, 1992, xii+127 pages
[13] Über die periodischen Transformationen der Kreisscheibe und der Kugelfläche, Math. Ann., Volume 80 (1919), pp. 36-38 | DOI
[14] Two-generator subgroups of the pure braid group, Geom. Dedicata, Volume 147 (2010), pp. 107-113 | DOI
[15] Braids and Permutations (2004) (https://arxiv.org/abs/math/0404528)
[16] Some problems that I would like to see solved (2015) (Abstract of a talk. Technion, http://www2.math.technion.ac.il/~pincho/Lin/Abstracts.pdf)
[17] Irreducibility of tensor squares, symmetric squares and alternating squares, Pac. J. Math., Volume 202 (2002) no. 2, pp. 379-427 | DOI
[18] Combinatorial group theory: presentations of groups in terms of generators and relations, Pure and Applied Mathematics, 13, Interscience Publishers, 1966, xii+444 pages
[19] Some subgroups of Artin’s braid group, Topology Appl., Volume 78 (1997) no. 1-2, pp. 123-142 | DOI
[20] Quasipositivity test via unitary representations of braid groups and its applications to real algebraic curves, J. Knot Theory Ramifications, Volume 10 (2001) no. 7, pp. 1005-1023 | DOI
[21] Algorithmic recognition of quasipositive braids of algebraic length two, J. Algebra, Volume 423 (2015), pp. 1080-1180 | DOI
[22] Algorithmic recognition of quasipositive 4-braids of algebraic length three, Groups Complex. Cryptol., Volume 7 (2015) no. 2, pp. 157-173 | DOI
Cité par Sources :