Nous montrons, sous des hypothèses très générales, que le noyau de Bergman partiel des sections s’annulant sur une hypersurfaces analytique décroît exponentiellement dans un voisinage du lieu d’annulation. Pour un fibré ample, nous montrons une estimée uniforme du noyau de Bergman associé à une métrique singulière le long d’une hypersurface. Finalement nous étudions les asymptotiques du noyau de Bergman sur un compact près du lieu d’annulation.
We show that under very general assumptions the partial Bergman kernel function of sections vanishing along an analytic hypersurface has exponential decay in a neighborhood of the vanishing locus. Considering an ample line bundle, we obtain a uniform estimate of the Bergman kernel function associated to a singular metric along the hypersurface. Finally, we study the asymptotics of the partial Bergman kernel function on a given compact set and near the vanishing locus.
Accepté le :
Publié le :
DOI : 10.5802/afst.1564
Mots clés : Bergman kernel function, singular Hermitian metric
Dan Coman 1 ; George Marinescu 2
@article{AFST_2017_6_26_5_1193_0, author = {Dan Coman and George Marinescu}, title = {On the first order asymptotics of partial {Bergman} kernels}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {1193--1210}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 26}, number = {5}, year = {2017}, doi = {10.5802/afst.1564}, zbl = {1394.32015}, mrnumber = {3746626}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1564/} }
TY - JOUR AU - Dan Coman AU - George Marinescu TI - On the first order asymptotics of partial Bergman kernels JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2017 SP - 1193 EP - 1210 VL - 26 IS - 5 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1564/ DO - 10.5802/afst.1564 LA - en ID - AFST_2017_6_26_5_1193_0 ER -
%0 Journal Article %A Dan Coman %A George Marinescu %T On the first order asymptotics of partial Bergman kernels %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2017 %P 1193-1210 %V 26 %N 5 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1564/ %R 10.5802/afst.1564 %G en %F AFST_2017_6_26_5_1193_0
Dan Coman; George Marinescu. On the first order asymptotics of partial Bergman kernels. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 26 (2017) no. 5, pp. 1193-1210. doi : 10.5802/afst.1564. https://afst.centre-mersenne.org/articles/10.5802/afst.1564/
[1] Bergman kernels on punctured Riemann surfaces (2016) (https://arxiv.org/abs/1604.06337) | Zbl
[2] Bergman kernels and equilibrium measures for ample line bundles (2007) (https://arxiv.org/abs/0704.1640)
[3] Bergman kernels related to Hermitian line bundles over compact complex manifolds, Explorations in complex and Riemannian geometry (Contemp. Math.), Volume 332, American Mathematical Society, 2003, pp. 1-17 | DOI | MR | Zbl
[4] The Bergman kernel and a theorem of Tian, Analysis and geometry in several complex variables (Katata, 1997) (Trends in Mathematics) (1999), pp. 1-23 | MR | Zbl
[5] Equidistribution for sequences of line bundles on normal Kähler spaces, Geom. Topol., Volume 21 (2017) no. 2, pp. 923-962 | DOI | Zbl
[6] Equidistribution results for singular metrics on line bundles, Ann. Sci. Éc. Norm. Supér., Volume 48 (2015) no. 3, pp. 497-536 | DOI | MR | Zbl
[7] Estimations pour l’opérateur d’un fibré vectoriel holomorphe semi-positif au-dessus d’une variété kählérienne complète, Ann. Sci. Éc. Norm. Supér., Volume 15 (1982) no. 3, pp. 457-511 | DOI | Zbl
[8] Asymptotics of spectral function of lower energy forms and Bergman kernel of semi-positive and big line bundles, Commun. Anal. Geom., Volume 22 (2014) no. 1, pp. 1-108 | DOI | MR | Zbl
[9] Localization results for Bergman and Szegő kernels (2016) (in preparation)
[10] Holomorphic Morse inequalities and Bergman kernels, Progress in Mathematics, 254, Birkhäuser, 2007, xiii+422 pages | MR | Zbl
[11] Toric partial density functions and stability of toric varieties, Math. Ann., Volume 358 (2014) no. 3-4, pp. 879-923 | DOI | MR | Zbl
[12] Analytic test configurations and geodesic rays, J. Symplectic Geom., Volume 12 (2014) no. 1, pp. 125-169 | DOI | MR | Zbl
[13] Asymptotics of partial density functions for divisors, J. Geom. Anal., Volume 27 (2017), pp. 1803-1854 | DOI | MR | Zbl
[14] An obstruction to the existence of constant scalar curvature Kähler metrics, J. Differ. Geom., Volume 72 (2006) no. 3, pp. 429-466 | DOI | Zbl
[15] Random polynomials with prescribed Newton polytope, J. Am. Math. Soc., Volume 17 (2004) no. 1, pp. 49-108 | DOI | MR | Zbl
[16] Szegő kernels and a theorem of Tian, Int. Math. Res. Not., Volume 1988 (1998) no. 6, pp. 317-331 | DOI | Zbl
[17] Interface asymptotics of partial Bergman kernels on -symmetric Kaehler manifolds, J. Geom. Anal., Volume 27 (2017), pp. 1803-1854 | Zbl
Cité par Sources :