KAWA lecture notes on the Kähler–Ricci flow
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 27 (2018) no. 2, pp. 285-376.

These lecture notes provide an introduction to the study of the Kähler–Ricci flow on compact Kähler manifolds, and a detailed exposition of some recent developments.

Ces notes de cours fournissent une introduction à l’étude du flot de Kähler–Ricci sur une variété kählérienne compacte, et un exposé détaillé de certains développements récents.

Published online:
DOI: 10.5802/afst.1571

Valentino Tosatti 1

1 Department of Mathematics, Northwestern University, 2033 Sheridan Road, Evanston, IL 60208
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AFST_2018_6_27_2_285_0,
     author = {Valentino Tosatti},
     title = {KAWA lecture notes on the {K\"ahler{\textendash}Ricci} flow},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {285--376},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 27},
     number = {2},
     year = {2018},
     doi = {10.5802/afst.1571},
     zbl = {1395.53074},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1571/}
}
TY  - JOUR
AU  - Valentino Tosatti
TI  - KAWA lecture notes on the Kähler–Ricci flow
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2018
SP  - 285
EP  - 376
VL  - 27
IS  - 2
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1571/
DO  - 10.5802/afst.1571
LA  - en
ID  - AFST_2018_6_27_2_285_0
ER  - 
%0 Journal Article
%A Valentino Tosatti
%T KAWA lecture notes on the Kähler–Ricci flow
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2018
%P 285-376
%V 27
%N 2
%I Université Paul Sabatier, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1571/
%R 10.5802/afst.1571
%G en
%F AFST_2018_6_27_2_285_0
Valentino Tosatti. KAWA lecture notes on the Kähler–Ricci flow. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 27 (2018) no. 2, pp. 285-376. doi : 10.5802/afst.1571. https://afst.centre-mersenne.org/articles/10.5802/afst.1571/

[1] Thierry Aubin Équations du type Monge-Ampère sur les variétés kählériennes compactes, Bull. Sci. Math., Volume 102 (1978), pp. 63-95 | Zbl

[2] Richard H. Bamler Long-time analysis of 3 dimensional Ricci flow III (2013) (https://arxiv.org/abs/1310.4483)

[3] Wolf P. Barth; Klaus Hulek; Chris A. M. Peters; Antonius Van de Ven Compact complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 4, Springer, 2004, xii+436 pages | MR | Zbl

[4] Nicholas Buchdahl On compact Kähler surfaces, Ann. Inst. Fourier, Volume 49 (1999) no. 1, pp. 287-302 | DOI | Numdam | MR | Zbl

[5] Frédéric Campana; Andreas Höring; Thomas Peternell Abundance for Kähler threefolds, Ann. Sci. Éc. Norm. Supér., Volume 49 (2016) no. 4, pp. 971-1025 | DOI | Zbl

[6] Huai-Dong Cao Deformation of Kähler metrics to Kähler-Einstein metrics on compact Kähler manifolds, Invent. Math., Volume 81 (1985), pp. 359-372 | Zbl

[7] Albert Chau Convergence of the Kähler–Ricci flow on noncompact Kähler manifolds, J. Differ. Geom., Volume 66 (2004) no. 2, pp. 211-232 | DOI | Zbl

[8] Xiuxiong Chen; Bing Wang Space of Ricci flows (II) (2014) (https://arxiv.org/abs/1405.6797)

[9] Xiuxiong Chen; Yuanqi Wang Bessel functions, heat kernel and the conical Kähler–Ricci flow, J. Funct. Anal., Volume 269 (2015) no. 2, pp. 551-632 | DOI | Zbl

[10] Tristan C. Collins; Valentino Tosatti Kähler currents and null loci, Invent. Math., Volume 202 (2015) no. 3, pp. 1167-1198 | DOI | Zbl

[11] Jean-Pierre Demailly Regularization of closed positive currents and intersection theory, J. Algebr. Geom., Volume 1 (1992) no. 3, pp. 361-409 | MR | Zbl

[12] Jean-Pierre Demailly; Mihai Paun Numerical characterization of the Kähler cone of a compact Kähler manifold, Ann. Math., Volume 159 (2004) no. 3, pp. 1247-1274 | DOI | Zbl

[13] Eleonora Di Nezza; Chinh H. Lu Uniqueness and short time regularity of the weak Kähler–Ricci flow, Adv. Math., Volume 305 (2017), pp. 953-993 | DOI | Zbl

[14] Tien-Cuong Dinh; Viêt-Anh Nguyên The mixed Hodge-Riemann bilinear relations for compact Kähler manifolds, Geom. Funct. Anal., Volume 16 (2006) no. 4, pp. 838-849 | DOI | Zbl

[15] Gregory Edwards A scalar curvature bound along the conical Kähler–Ricci flow, J. Geom. Anal., Volume 28 (2018) no. 1, pp. 225-252 | DOI | MR | Zbl

[16] Lawrence Ein; Robert Lazarsfeld; Mircea Mustaţă; Michael Nakamaye; Mihnea Popa Asymptotic invariants of base loci, Ann. Inst. Fourier, Volume 56 (2006) no. 6, pp. 1701-1734 | Numdam | MR | Zbl

[17] Joerg Enders; Reto Muller; Peter M. Topping On type-I singularities in Ricci flow, Commun. Anal. Geom., Volume 19 (2011) no. 5, pp. 905-922 | DOI | MR | Zbl

[18] Philippe Eyssidieux; Vincent Guedj; Ahmed Zeriahi Weak solutions to degenerate complex Monge-Ampère flows II, Adv. Math., Volume 293 (2016), pp. 37-80 | DOI | Zbl

[19] Mikhail Feldman; Tom Ilmanen; Dan Knopf Rotationally symmetric shrinking and expanding gradient Kähler–Ricci solitons, J. Differ. Geom., Volume 65 (2003) no. 2, pp. 169-209 | DOI | Zbl

[20] Joel Fine Fibrations with constant scalar curvature Kähler metrics and the CM-line bundle, Math. Res. Lett., Volume 14 (2007) no. 2, pp. 239-247 | DOI | MR | Zbl

[21] Wolfgang Fischer; Hans Grauert Lokal-triviale Familien kompakter komplexer Mannigfaltigkeiten, Nachr. Akad. Wiss. Göttingen, Volume 1965 (1965), pp. 89-94 | MR | Zbl

[22] Frederick Tsz-Ho Fong; Zhou Zhang The collapsing rate of the Kähler–Ricci flow with regular infinite time singularity, J. Reine Angew. Math., Volume 703 (2015), pp. 95-113 | Zbl

[23] Jixiang Fu; Jian Xiao Teissier’s problem on proportionality of nef and big classes over a compact Kähler manifold (2014) (https://arxiv.org/abs/1410.4878, to appear in Algebr. Geom.) | Zbl

[24] Akira Fujiki; Georg Schumacher The moduli space of extremal compact Kähler manifolds and generalized Weil-Petersson metrics, Publ. Res. Inst. Math. Sci., Volume 26 (1990) no. 1, pp. 101-183 | DOI | Zbl

[25] Osamu Fujino; Yoshinori Gongyo On images of weak Fano manifolds, Math. Z., Volume 270 (2012) no. 1-2, pp. 531-544 | DOI | MR | Zbl

[26] Takao Fujita On Kähler fiber spaces over curves, J. Math. Soc. Japan, Volume 30 (1978), pp. 779-794 | DOI | Zbl

[27] Matthew Gill Convergence of the parabolic complex Monge-Ampère equation on compact Hermitian manifolds, Commun. Anal. Geom., Volume 19 (2011) no. 2, pp. 277-304 | DOI | MR | Zbl

[28] Matthew Gill Collapsing of products along the Kähler–Ricci flow, Trans. Am. Math. Soc., Volume 366 (2014) no. 7, pp. 3907-3924 | DOI | MR | Zbl

[29] Brian R. Greene; Alfred Shapere; Cumrun Vafa; Shing-Tung Yau Stringy cosmic strings and noncompact Calabi-Yau manifolds, Nucl. Phys. B, Volume 337 (1990) no. 1, pp. 1-36 | DOI | MR | Zbl

[30] Phillip Griffiths; Joseph Harris Principles of algebraic geometry, Pure and Applied Mathematics, John Wiley & Sons, 1978, xii+813 pages | Zbl

[31] Mark Gross; Valentino Tosatti; Yuguang Zhang Collapsing of abelian fibered Calabi-Yau manifolds, Duke Math. J., Volume 162 (2013) no. 3, pp. 517-551 | DOI | MR | Zbl

[32] Hui-Ling Gu; Xi-Ping Zhu The existence of type II singularities for the Ricci flow on S n+1 , Commun. Anal. Geom., Volume 16 (2008) no. 3, pp. 467-494 | MR | Zbl

[33] Bin Guo On the Kähler Ricci flow on projective manifolds of general type, Int. Math. Res. Not., Volume 2017 (2017) no. 7, pp. 2139-2171 | DOI | Zbl

[34] Bin Guo; Jian Song; Ben Weinkove Geometric convergence of the Kähler–Ricci flow on complex surfaces of general type, Int. Math. Res. Not., Volume 2016 (2016) no. 18, pp. 5652-5669 | DOI | Zbl

[35] Richard S. Hamilton Three-manifolds with positive Ricci curvature, J. Differ. Geom., Volume 17 (1982), pp. 255-306 | DOI | MR | Zbl

[36] Richard S. Hamilton The Ricci flow on surfaces, Mathematics and general relativity (Santa Cruz, CA, 1986) (Contemporary Mathematics), Volume 71, American Mathematical Society, 1988, pp. 237-262 | DOI | MR | Zbl

[37] Richard S. Hamilton The formation of singularities in the Ricci flow, Surveys in differential geometry. Vol. II (Cambridge, MA, 1993) (Surveys in Differential Geometry), International Press, 1995, pp. 7-136 | Zbl

[38] Hans-Joachim Hein; Valentino Tosatti Remarks on the collapsing of torus fibered Calabi-Yau manifolds, Bull. Lond. Math. Soc., Volume 47 (2015) no. 6, pp. 1021-1027 | MR | Zbl

[39] Andreas Höring; Thomas Peternell Mori fibre spaces for Kähler threefolds, J. Math. Sci., Tokyo, Volume 22 (2015) no. 1, pp. 219-246 | Zbl

[40] Andreas Höring; Thomas Peternell Minimal models for Kähler threefolds, Invent. Math., Volume 203 (2016) no. 1, pp. 217-264 | DOI | Zbl

[41] Daniel Huybrechts Complex geometry. An introduction, Universitext, Springer, 2005, xii+309 pages | Zbl

[42] Yujiro Kawamata On the length of an extremal rational curve, Invent. Math., Volume 105 (1991) no. 3, pp. 609-611 | DOI | MR | Zbl

[43] Yujiro Kawamata; Katsumi Matsuda; Kenji Matsuki Introduction to the minimal model problem, Algebraic geometry (Sendai, 1985) (Advanced Studies in Pure Mathematics), Volume 10, North-Holland, 1987, pp. 283-360 | DOI | MR | Zbl

[44] Shoshichi Kobayashi; Katsumi Nomizu Foundations of differential geometry. I., John Wiley & Sons, 1963 | Zbl

[45] Shoshichi Kobayashi; Katsumi Nomizu Foundations of differential geometry. II., John Wiley & Sons, 1969 | Zbl

[46] Kunihiko Kodaira Complex manifolds and deformation of complex structures, Classics in Mathematics, Springer, 2005, viii+465 pages | Zbl

[47] Nicolaĭ Vladimirovich Krylov Lectures on elliptic and parabolic equations in Hölder spaces, Graduate Studies in Mathematics, 12, American Mathematical Society, 1996, xii+164 pages | Zbl

[48] Gabriele La Nave; Gang Tian Soliton-type metrics and Kähler–Ricci flow on symplectic quotients, J. Reine Angew. Math., Volume 711 (2016), pp. 139-166 | Zbl

[49] Ahcène Lamari Le cône kählérien d’une surface, J. Math. Pures Appl., Volume 78 (1999) no. 3, pp. 249-263 | DOI | MR | Zbl

[50] Robert Lazarsfeld Positivity in algebraic geometry I & II, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 48-49, Springer, 2004 | Zbl

[51] Gary M. Lieberman Second order parabolic differential equations, World Scientific, 1996, xi+439 pages | Zbl

[52] Michael Nakamaye Stable base loci of linear series, Math. Ann., Volume 318 (2000) no. 4, pp. 837-847 | DOI | MR | Zbl

[53] Noboru Nakayama The lower semicontinuity of the plurigenera of complex varieties, Algebraic geometry (Sendai, 1985) (Advanced Studies in Pure Mathematics), Volume 10, North-Holland, 1987, pp. 551-590 | DOI | MR | Zbl

[54] Duong Hong Phong; Jacob Sturm On stability and the convergence of the Kähler–Ricci flow, J. Differ. Geom., Volume 72 (2006) no. 1, pp. 149-168 | DOI | Zbl

[55] Xiaochun Rong Convergence and collapsing theorems in Riemannian geometry, Handbook of geometric analysis 2 (Advanced Lectures in Mathematics), Volume 13, Higher Education Press, 2010, pp. 193-299 | MR | Zbl

[56] Natasa Sesum; Gang Tian Bounding scalar curvature and diameter along the Kähler–Ricci flow, J. Inst. Math. Jussieu, Volume 7 (2008) no. 3, pp. 575-587 | Zbl

[57] Liangming Shen Unnormalize conical Kähler–Ricci flow (2014) (https://arxiv.org/abs/1411.7284)

[58] Morgan Sherman; Ben Weinkove Interior derivative estimates for the Kähler–Ricci flow, Pac. J. Math., Volume 257 (2012) no. 2, pp. 491-501 | DOI | Zbl

[59] Wan-Xiong Shi Ricci flow and the uniformization on complete noncompact Kähler manifolds, J. Differ. Geom., Volume 45 (1997) no. 1, pp. 94-220 | MR | Zbl

[60] Jian Song Ricci flow and birational surgery (2013) (https://arxiv.org/abs/1304.2607)

[61] Jian Song Finite time extinction of the Kähler–Ricci flow, Math. Res. Lett., Volume 21 (2014) no. 6, pp. 1435-1449 | DOI | Zbl

[62] Jian Song; Gábor Székelyhidi; Ben Weinkove The Kähler–Ricci flow on projective bundles, Int. Math. Res. Not., Volume 2013 (2013) no. 2, pp. 243-257 | DOI | Zbl

[63] Jian Song; Gang Tian The Kähler–Ricci flow on surfaces of positive Kodaira dimension, Invent. Math., Volume 170 (2007) no. 3, pp. 609-653 | DOI | Zbl

[64] Jian Song; Gang Tian Canonical measures and Kähler–Ricci flow, J. Am. Math. Soc., Volume 25 (2012) no. 2, pp. 303-353 | DOI | Zbl

[65] Jian Song; Gang Tian Bounding scalar curvature for global solutions of the Kähler–Ricci flow, Am. J. Math., Volume 138 (2016) no. 3, pp. 683-695 | DOI | Zbl

[66] Jian Song; Gang Tian The Kähler–Ricci flow through singularities, Invent. Math., Volume 207 (2017) no. 2, pp. 519-595 | DOI | Zbl

[67] Jian Song; Ben Weinkove Contracting exceptional divisors by the Kähler–Ricci flow. I., Duke Math. J., Volume 162 (2013) no. 2, pp. 367-415 | DOI | Zbl

[68] Jian Song; Ben Weinkove Introduction to the Kähler–Ricci flow, An introduction to the Kähler–Ricci flow (Lecture Notes in Math.), Volume 2086, Springer, 2013, pp. 89-188 | DOI | Zbl

[69] Jian Song; Ben Weinkove Contracting exceptional divisors by the Kähler–Ricci flow. II., Proc. Lond. Math. Soc., Volume 108 (2014) no. 6, pp. 1529-1561 | DOI | Zbl

[70] Gang Tian Smoothness of the universal deformation space of compact Calabi–Yau manifolds and its Peterson–Weil metric, Mathematical aspects of string theory (Advanced Series in Mathematical Physics), Volume 1, World Scientific, 1987, pp. 629-646 | DOI | Zbl

[71] Gang Tian New results and problems on Kähler–Ricci flow, Differential geometry, mathematical physics, mathematics and society II (Astérisque), Volume 322, Société Mathématique de France, 2008, pp. 71-91 | Numdam | Zbl

[72] Gang Tian Finite-time singularity of Kähler–Ricci flow, Discrete Contin. Dyn. Syst., Volume 28 (2010) no. 3, pp. 1137-1150 | DOI | Zbl

[73] Gang Tian; Zhou Zhang On the Kähler–Ricci flow on projective manifolds of general type, Chin. Ann. Math., Volume 27 (2006) no. 2, pp. 179-192 | DOI | Zbl

[74] Gang Tian; Zhou Zhang Convergence of Kähler–Ricci flow on lower dimensional algebraic manifolds of general type, Int. Math. Res. Not., Volume 2016 (2016) no. 21, pp. 6493-6511 | DOI | Zbl

[75] Valentino Tosatti Adiabatic limits of Ricci-flat Kähler metrics, J. Differ. Geom., Volume 84 (2010) no. 2, pp. 427-453 | DOI | Zbl

[76] Valentino Tosatti Non-Kähler Calabi–Yau manifolds, Analysis, complex geometry, and mathematical physics (Contemporary Mathematics), Volume 644, American Mathematical Society, 2015, pp. 261-277 | DOI | Zbl

[77] Valentino Tosatti Nakamaye’s theorem on complex manifolds (2016) (https://arxiv.org/abs/1603.00319, to appear in Proc. Symp. Pure Math.)

[78] Valentino Tosatti; Ben Weinkove The Chern–Ricci flow on complex surfaces, Compos. Math., Volume 149 (2013) no. 12, pp. 2101-2138 | DOI | MR | Zbl

[79] Valentino Tosatti; Ben Weinkove On the evolution of a Hermitian metric by its Chern–Ricci form, J. Differ. Geom., Volume 99 (2015) no. 1, pp. 125-163 | DOI | MR | Zbl

[80] Valentino Tosatti; Ben Weinkove; Xiaokui Yang Collapsing of the Chern–Ricci flow on elliptic surfaces, Math. Ann., Volume 362 (2015) no. 3-4, pp. 1223-1271 | DOI | MR | Zbl

[81] Valentino Tosatti; Ben Weinkove; Xiaokui Yang The Kähler–Ricci flow, Ricci-flat metrics and collapsing limits (2017) (https://arxiv.org/abs/1408.0161, to appear in Am. J. Math.) | Zbl

[82] Valentino Tosatti; Yuguang Zhang Infinite time singularities of the Kähler–Ricci flow, Geom. Topol., Volume 19 (2015) no. 5, pp. 2925-2948 | DOI | Zbl

[83] Valentino Tosatti; Yuguang Zhang Finite time collapsing of the Kähler–Ricci flow on threefolds, Ann. Sc. Norm. Super. Pisa Cl. Sci, Volume 18 (2018) no. 1, pp. 105-118 | DOI | Zbl

[84] Hajime Tsuji Existence and degeneration of Kähler-Einstein metrics on minimal algebraic varieties of general type, Math. Ann., Volume 281 (1988) no. 1, pp. 123-134 | DOI | Zbl

[85] Hajime Tsuji Degenerate Monge-Ampère equation in algebraic geometry, Proceedings of the miniconference on analysis and applications (Brisbane, 1993) (Proceedings of the Centre for Mathematics and its Applications), Volume 33, Australian National University, 1994, pp. 209-224 | Zbl

[86] Joachim Wehler Isomorphie von Familien kompakter komplexer Mannigfaltigkeiten, Math. Ann., Volume 231 (1977), pp. 77-90 | DOI | MR | Zbl

[87] Ben Weinkove The Kähler–Ricci flow on compact Kähler manifolds, Geometric analysis (IAS/Park City Mathematics Series), Volume 22, American Mathematical Society, 2016, pp. 53-108 | Zbl

[88] Shing-Tung Yau On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation, Commun. Pure Appl. Math., Volume 31 (1978), pp. 339-411 | Zbl

[89] Zhou Zhang Scalar curvature bound for Kähler–Ricci flows over minimal manifolds of general type, Int. Math. Res. Not., Volume 2009 (2009) no. 20, pp. 3901-3912 | MR | Zbl

[90] Zhou Zhang Scalar curvature behavior for finite-time singularity of Kähler–Ricci flow, Mich. Math. J., Volume 59 (2010) no. 2, pp. 419-433 | DOI | MR | Zbl

[91] Zhou Zhang General weak limit for Kähler–Ricci flow, Commun. Contemp. Math., Volume 18 (2016) no. 5, 1550079, 21 pages (Article ID 1550079, 21 p.) | MR | Zbl

Cited by Sources: