These lecture notes provide an introduction to the study of the Kähler–Ricci flow on compact Kähler manifolds, and a detailed exposition of some recent developments.
Ces notes de cours fournissent une introduction à l’étude du flot de Kähler–Ricci sur une variété kählérienne compacte, et un exposé détaillé de certains développements récents.
DOI: 10.5802/afst.1571
Valentino Tosatti 1
@article{AFST_2018_6_27_2_285_0, author = {Valentino Tosatti}, title = {KAWA lecture notes on the {K\"ahler{\textendash}Ricci} flow}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {285--376}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 27}, number = {2}, year = {2018}, doi = {10.5802/afst.1571}, zbl = {1395.53074}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1571/} }
TY - JOUR AU - Valentino Tosatti TI - KAWA lecture notes on the Kähler–Ricci flow JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2018 SP - 285 EP - 376 VL - 27 IS - 2 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1571/ DO - 10.5802/afst.1571 LA - en ID - AFST_2018_6_27_2_285_0 ER -
%0 Journal Article %A Valentino Tosatti %T KAWA lecture notes on the Kähler–Ricci flow %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2018 %P 285-376 %V 27 %N 2 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1571/ %R 10.5802/afst.1571 %G en %F AFST_2018_6_27_2_285_0
Valentino Tosatti. KAWA lecture notes on the Kähler–Ricci flow. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 27 (2018) no. 2, pp. 285-376. doi : 10.5802/afst.1571. https://afst.centre-mersenne.org/articles/10.5802/afst.1571/
[1] Équations du type Monge-Ampère sur les variétés kählériennes compactes, Bull. Sci. Math., Volume 102 (1978), pp. 63-95 | Zbl
[2] Long-time analysis of 3 dimensional Ricci flow III (2013) (https://arxiv.org/abs/1310.4483)
[3] Compact complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 4, Springer, 2004, xii+436 pages | MR | Zbl
[4] On compact Kähler surfaces, Ann. Inst. Fourier, Volume 49 (1999) no. 1, pp. 287-302 | DOI | Numdam | MR | Zbl
[5] Abundance for Kähler threefolds, Ann. Sci. Éc. Norm. Supér., Volume 49 (2016) no. 4, pp. 971-1025 | DOI | Zbl
[6] Deformation of Kähler metrics to Kähler-Einstein metrics on compact Kähler manifolds, Invent. Math., Volume 81 (1985), pp. 359-372 | Zbl
[7] Convergence of the Kähler–Ricci flow on noncompact Kähler manifolds, J. Differ. Geom., Volume 66 (2004) no. 2, pp. 211-232 | DOI | Zbl
[8] Space of Ricci flows (II) (2014) (https://arxiv.org/abs/1405.6797)
[9] Bessel functions, heat kernel and the conical Kähler–Ricci flow, J. Funct. Anal., Volume 269 (2015) no. 2, pp. 551-632 | DOI | Zbl
[10] Kähler currents and null loci, Invent. Math., Volume 202 (2015) no. 3, pp. 1167-1198 | DOI | Zbl
[11] Regularization of closed positive currents and intersection theory, J. Algebr. Geom., Volume 1 (1992) no. 3, pp. 361-409 | MR | Zbl
[12] Numerical characterization of the Kähler cone of a compact Kähler manifold, Ann. Math., Volume 159 (2004) no. 3, pp. 1247-1274 | DOI | Zbl
[13] Uniqueness and short time regularity of the weak Kähler–Ricci flow, Adv. Math., Volume 305 (2017), pp. 953-993 | DOI | Zbl
[14] The mixed Hodge-Riemann bilinear relations for compact Kähler manifolds, Geom. Funct. Anal., Volume 16 (2006) no. 4, pp. 838-849 | DOI | Zbl
[15] A scalar curvature bound along the conical Kähler–Ricci flow, J. Geom. Anal., Volume 28 (2018) no. 1, pp. 225-252 | DOI | MR | Zbl
[16] Asymptotic invariants of base loci, Ann. Inst. Fourier, Volume 56 (2006) no. 6, pp. 1701-1734 | Numdam | MR | Zbl
[17] On type-I singularities in Ricci flow, Commun. Anal. Geom., Volume 19 (2011) no. 5, pp. 905-922 | DOI | MR | Zbl
[18] Weak solutions to degenerate complex Monge-Ampère flows II, Adv. Math., Volume 293 (2016), pp. 37-80 | DOI | Zbl
[19] Rotationally symmetric shrinking and expanding gradient Kähler–Ricci solitons, J. Differ. Geom., Volume 65 (2003) no. 2, pp. 169-209 | DOI | Zbl
[20] Fibrations with constant scalar curvature Kähler metrics and the CM-line bundle, Math. Res. Lett., Volume 14 (2007) no. 2, pp. 239-247 | DOI | MR | Zbl
[21] Lokal-triviale Familien kompakter komplexer Mannigfaltigkeiten, Nachr. Akad. Wiss. Göttingen, Volume 1965 (1965), pp. 89-94 | MR | Zbl
[22] The collapsing rate of the Kähler–Ricci flow with regular infinite time singularity, J. Reine Angew. Math., Volume 703 (2015), pp. 95-113 | Zbl
[23] Teissier’s problem on proportionality of nef and big classes over a compact Kähler manifold (2014) (https://arxiv.org/abs/1410.4878, to appear in Algebr. Geom.) | Zbl
[24] The moduli space of extremal compact Kähler manifolds and generalized Weil-Petersson metrics, Publ. Res. Inst. Math. Sci., Volume 26 (1990) no. 1, pp. 101-183 | DOI | Zbl
[25] On images of weak Fano manifolds, Math. Z., Volume 270 (2012) no. 1-2, pp. 531-544 | DOI | MR | Zbl
[26] On Kähler fiber spaces over curves, J. Math. Soc. Japan, Volume 30 (1978), pp. 779-794 | DOI | Zbl
[27] Convergence of the parabolic complex Monge-Ampère equation on compact Hermitian manifolds, Commun. Anal. Geom., Volume 19 (2011) no. 2, pp. 277-304 | DOI | MR | Zbl
[28] Collapsing of products along the Kähler–Ricci flow, Trans. Am. Math. Soc., Volume 366 (2014) no. 7, pp. 3907-3924 | DOI | MR | Zbl
[29] Stringy cosmic strings and noncompact Calabi-Yau manifolds, Nucl. Phys. B, Volume 337 (1990) no. 1, pp. 1-36 | DOI | MR | Zbl
[30] Principles of algebraic geometry, Pure and Applied Mathematics, John Wiley & Sons, 1978, xii+813 pages | Zbl
[31] Collapsing of abelian fibered Calabi-Yau manifolds, Duke Math. J., Volume 162 (2013) no. 3, pp. 517-551 | DOI | MR | Zbl
[32] The existence of type II singularities for the Ricci flow on , Commun. Anal. Geom., Volume 16 (2008) no. 3, pp. 467-494 | MR | Zbl
[33] On the Kähler Ricci flow on projective manifolds of general type, Int. Math. Res. Not., Volume 2017 (2017) no. 7, pp. 2139-2171 | DOI | Zbl
[34] Geometric convergence of the Kähler–Ricci flow on complex surfaces of general type, Int. Math. Res. Not., Volume 2016 (2016) no. 18, pp. 5652-5669 | DOI | Zbl
[35] Three-manifolds with positive Ricci curvature, J. Differ. Geom., Volume 17 (1982), pp. 255-306 | DOI | MR | Zbl
[36] The Ricci flow on surfaces, Mathematics and general relativity (Santa Cruz, CA, 1986) (Contemporary Mathematics), Volume 71, American Mathematical Society, 1988, pp. 237-262 | DOI | MR | Zbl
[37] The formation of singularities in the Ricci flow, Surveys in differential geometry. Vol. II (Cambridge, MA, 1993) (Surveys in Differential Geometry), International Press, 1995, pp. 7-136 | Zbl
[38] Remarks on the collapsing of torus fibered Calabi-Yau manifolds, Bull. Lond. Math. Soc., Volume 47 (2015) no. 6, pp. 1021-1027 | MR | Zbl
[39] Mori fibre spaces for Kähler threefolds, J. Math. Sci., Tokyo, Volume 22 (2015) no. 1, pp. 219-246 | Zbl
[40] Minimal models for Kähler threefolds, Invent. Math., Volume 203 (2016) no. 1, pp. 217-264 | DOI | Zbl
[41] Complex geometry. An introduction, Universitext, Springer, 2005, xii+309 pages | Zbl
[42] On the length of an extremal rational curve, Invent. Math., Volume 105 (1991) no. 3, pp. 609-611 | DOI | MR | Zbl
[43] Introduction to the minimal model problem, Algebraic geometry (Sendai, 1985) (Advanced Studies in Pure Mathematics), Volume 10, North-Holland, 1987, pp. 283-360 | DOI | MR | Zbl
[44] Foundations of differential geometry. I., John Wiley & Sons, 1963 | Zbl
[45] Foundations of differential geometry. II., John Wiley & Sons, 1969 | Zbl
[46] Complex manifolds and deformation of complex structures, Classics in Mathematics, Springer, 2005, viii+465 pages | Zbl
[47] Lectures on elliptic and parabolic equations in Hölder spaces, Graduate Studies in Mathematics, 12, American Mathematical Society, 1996, xii+164 pages | Zbl
[48] Soliton-type metrics and Kähler–Ricci flow on symplectic quotients, J. Reine Angew. Math., Volume 711 (2016), pp. 139-166 | Zbl
[49] Le cône kählérien d’une surface, J. Math. Pures Appl., Volume 78 (1999) no. 3, pp. 249-263 | DOI | MR | Zbl
[50] Positivity in algebraic geometry I & II, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 48-49, Springer, 2004 | Zbl
[51] Second order parabolic differential equations, World Scientific, 1996, xi+439 pages | Zbl
[52] Stable base loci of linear series, Math. Ann., Volume 318 (2000) no. 4, pp. 837-847 | DOI | MR | Zbl
[53] The lower semicontinuity of the plurigenera of complex varieties, Algebraic geometry (Sendai, 1985) (Advanced Studies in Pure Mathematics), Volume 10, North-Holland, 1987, pp. 551-590 | DOI | MR | Zbl
[54] On stability and the convergence of the Kähler–Ricci flow, J. Differ. Geom., Volume 72 (2006) no. 1, pp. 149-168 | DOI | Zbl
[55] Convergence and collapsing theorems in Riemannian geometry, Handbook of geometric analysis 2 (Advanced Lectures in Mathematics), Volume 13, Higher Education Press, 2010, pp. 193-299 | MR | Zbl
[56] Bounding scalar curvature and diameter along the Kähler–Ricci flow, J. Inst. Math. Jussieu, Volume 7 (2008) no. 3, pp. 575-587 | Zbl
[57] Unnormalize conical Kähler–Ricci flow (2014) (https://arxiv.org/abs/1411.7284)
[58] Interior derivative estimates for the Kähler–Ricci flow, Pac. J. Math., Volume 257 (2012) no. 2, pp. 491-501 | DOI | Zbl
[59] Ricci flow and the uniformization on complete noncompact Kähler manifolds, J. Differ. Geom., Volume 45 (1997) no. 1, pp. 94-220 | MR | Zbl
[60] Ricci flow and birational surgery (2013) (https://arxiv.org/abs/1304.2607)
[61] Finite time extinction of the Kähler–Ricci flow, Math. Res. Lett., Volume 21 (2014) no. 6, pp. 1435-1449 | DOI | Zbl
[62] The Kähler–Ricci flow on projective bundles, Int. Math. Res. Not., Volume 2013 (2013) no. 2, pp. 243-257 | DOI | Zbl
[63] The Kähler–Ricci flow on surfaces of positive Kodaira dimension, Invent. Math., Volume 170 (2007) no. 3, pp. 609-653 | DOI | Zbl
[64] Canonical measures and Kähler–Ricci flow, J. Am. Math. Soc., Volume 25 (2012) no. 2, pp. 303-353 | DOI | Zbl
[65] Bounding scalar curvature for global solutions of the Kähler–Ricci flow, Am. J. Math., Volume 138 (2016) no. 3, pp. 683-695 | DOI | Zbl
[66] The Kähler–Ricci flow through singularities, Invent. Math., Volume 207 (2017) no. 2, pp. 519-595 | DOI | Zbl
[67] Contracting exceptional divisors by the Kähler–Ricci flow. I., Duke Math. J., Volume 162 (2013) no. 2, pp. 367-415 | DOI | Zbl
[68] Introduction to the Kähler–Ricci flow, An introduction to the Kähler–Ricci flow (Lecture Notes in Math.), Volume 2086, Springer, 2013, pp. 89-188 | DOI | Zbl
[69] Contracting exceptional divisors by the Kähler–Ricci flow. II., Proc. Lond. Math. Soc., Volume 108 (2014) no. 6, pp. 1529-1561 | DOI | Zbl
[70] Smoothness of the universal deformation space of compact Calabi–Yau manifolds and its Peterson–Weil metric, Mathematical aspects of string theory (Advanced Series in Mathematical Physics), Volume 1, World Scientific, 1987, pp. 629-646 | DOI | Zbl
[71] New results and problems on Kähler–Ricci flow, Differential geometry, mathematical physics, mathematics and society II (Astérisque), Volume 322, Société Mathématique de France, 2008, pp. 71-91 | Numdam | Zbl
[72] Finite-time singularity of Kähler–Ricci flow, Discrete Contin. Dyn. Syst., Volume 28 (2010) no. 3, pp. 1137-1150 | DOI | Zbl
[73] On the Kähler–Ricci flow on projective manifolds of general type, Chin. Ann. Math., Volume 27 (2006) no. 2, pp. 179-192 | DOI | Zbl
[74] Convergence of Kähler–Ricci flow on lower dimensional algebraic manifolds of general type, Int. Math. Res. Not., Volume 2016 (2016) no. 21, pp. 6493-6511 | DOI | Zbl
[75] Adiabatic limits of Ricci-flat Kähler metrics, J. Differ. Geom., Volume 84 (2010) no. 2, pp. 427-453 | DOI | Zbl
[76] Non-Kähler Calabi–Yau manifolds, Analysis, complex geometry, and mathematical physics (Contemporary Mathematics), Volume 644, American Mathematical Society, 2015, pp. 261-277 | DOI | Zbl
[77] Nakamaye’s theorem on complex manifolds (2016) (https://arxiv.org/abs/1603.00319, to appear in Proc. Symp. Pure Math.)
[78] The Chern–Ricci flow on complex surfaces, Compos. Math., Volume 149 (2013) no. 12, pp. 2101-2138 | DOI | MR | Zbl
[79] On the evolution of a Hermitian metric by its Chern–Ricci form, J. Differ. Geom., Volume 99 (2015) no. 1, pp. 125-163 | DOI | MR | Zbl
[80] Collapsing of the Chern–Ricci flow on elliptic surfaces, Math. Ann., Volume 362 (2015) no. 3-4, pp. 1223-1271 | DOI | MR | Zbl
[81] The Kähler–Ricci flow, Ricci-flat metrics and collapsing limits (2017) (https://arxiv.org/abs/1408.0161, to appear in Am. J. Math.) | Zbl
[82] Infinite time singularities of the Kähler–Ricci flow, Geom. Topol., Volume 19 (2015) no. 5, pp. 2925-2948 | DOI | Zbl
[83] Finite time collapsing of the Kähler–Ricci flow on threefolds, Ann. Sc. Norm. Super. Pisa Cl. Sci, Volume 18 (2018) no. 1, pp. 105-118 | DOI | Zbl
[84] Existence and degeneration of Kähler-Einstein metrics on minimal algebraic varieties of general type, Math. Ann., Volume 281 (1988) no. 1, pp. 123-134 | DOI | Zbl
[85] Degenerate Monge-Ampère equation in algebraic geometry, Proceedings of the miniconference on analysis and applications (Brisbane, 1993) (Proceedings of the Centre for Mathematics and its Applications), Volume 33, Australian National University, 1994, pp. 209-224 | Zbl
[86] Isomorphie von Familien kompakter komplexer Mannigfaltigkeiten, Math. Ann., Volume 231 (1977), pp. 77-90 | DOI | MR | Zbl
[87] The Kähler–Ricci flow on compact Kähler manifolds, Geometric analysis (IAS/Park City Mathematics Series), Volume 22, American Mathematical Society, 2016, pp. 53-108 | Zbl
[88] On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation, Commun. Pure Appl. Math., Volume 31 (1978), pp. 339-411 | Zbl
[89] Scalar curvature bound for Kähler–Ricci flows over minimal manifolds of general type, Int. Math. Res. Not., Volume 2009 (2009) no. 20, pp. 3901-3912 | MR | Zbl
[90] Scalar curvature behavior for finite-time singularity of Kähler–Ricci flow, Mich. Math. J., Volume 59 (2010) no. 2, pp. 419-433 | DOI | MR | Zbl
[91] General weak limit for Kähler–Ricci flow, Commun. Contemp. Math., Volume 18 (2016) no. 5, 1550079, 21 pages (Article ID 1550079, 21 p.) | MR | Zbl
Cited by Sources: