Equidistribution and β-ensembles
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 27 (2018) no. 2, pp. 377-387.

We find the precise rate at which the empirical measure associated to a β-ensemble converges to its limiting measure. In our setting the β-ensemble is a random point process on a compact complex manifold distributed according to the β power of a determinant of sections in a positive line bundle. A particular case is the spherical ensemble of generalized random eigenvalues of pairs of matrices with independent identically distributed Gaussian entries.

On trouve le taux précis où la mesure empirique associée à un β-ensemble converge vers sa mesure limite. Le β-ensemble est un processus de points aléatoires sur une variété complexe compacte répartis selon la puissance β d’un déterminant de sections d’un fibré de ligne positif. Un cas particulier est l’ensemble sphérique de valeurs propres généralisés de paires de matrices aléatoires avec entrées gaussiennes identiquement distribuées et independantes.

Published online:
DOI: 10.5802/afst.1572

Tom Carroll 1; Jordi Marzo 2; Xavier Massaneda 2; Joaquim Ortega-Cerdà 2

1 University College Cork
2 Universitat de Barcelona, BGSMath
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AFST_2018_6_27_2_377_0,
     author = {Tom Carroll and Jordi Marzo and Xavier Massaneda and Joaquim Ortega-Cerd\`a},
     title = {Equidistribution and $\beta $-ensembles},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {377--387},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 27},
     number = {2},
     year = {2018},
     doi = {10.5802/afst.1572},
     mrnumber = {3831027},
     zbl = {1410.60010},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1572/}
}
TY  - JOUR
AU  - Tom Carroll
AU  - Jordi Marzo
AU  - Xavier Massaneda
AU  - Joaquim Ortega-Cerdà
TI  - Equidistribution and $\beta $-ensembles
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2018
SP  - 377
EP  - 387
VL  - 27
IS  - 2
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1572/
DO  - 10.5802/afst.1572
LA  - en
ID  - AFST_2018_6_27_2_377_0
ER  - 
%0 Journal Article
%A Tom Carroll
%A Jordi Marzo
%A Xavier Massaneda
%A Joaquim Ortega-Cerdà
%T Equidistribution and $\beta $-ensembles
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2018
%P 377-387
%V 27
%N 2
%I Université Paul Sabatier, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1572/
%R 10.5802/afst.1572
%G en
%F AFST_2018_6_27_2_377_0
Tom Carroll; Jordi Marzo; Xavier Massaneda; Joaquim Ortega-Cerdà. Equidistribution and $\beta $-ensembles. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 27 (2018) no. 2, pp. 377-387. doi : 10.5802/afst.1572. https://afst.centre-mersenne.org/articles/10.5802/afst.1572/

[1] Kasra Alishahi; Mohammadsadegh Zamani The spherical ensemble and uniform distribution of points on the sphere, Electron. J. Probab., Volume 20 (2015), 23, 27 pages | DOI | MR | Zbl

[2] Robert Berman; Sébastien Boucksom; David Witt Nyström Fekete points and convergence towards equilibrium measures on complex manifolds, Acta Math., Volume 207 (2011) no. 1, pp. 1-27 | DOI | MR | Zbl

[3] Robert J. Berman Determinantal point processes and fermions on complex manifolds: large deviations and bosonization, Commun. Math. Phys., Volume 327 (2014) no. 1, pp. 1-47 | DOI | MR | Zbl

[4] Bo Berndtsson Bergman kernels related to Hermitian line bundles over compact complex manifolds, Explorations in complex and Riemannian geometry (Contemporary Mathematics), Volume 332, American Mathematical Society, 2003, pp. 1-17 | DOI | MR | Zbl

[5] Charles Bordenave On the spectrum of sum and product of non-Hermitian random matrices, Electron. Commun. Probab., Volume 16 (2011), pp. 104-113 | DOI | MR | Zbl

[6] Jean-Michel Caillol Exact results for a two-dimensional one-component plasma on a sphere, J. Physique Lett., Volume 42 (1981) no. 12, pp. 245-247 | DOI

[7] David Catlin The Bergman kernel and a theorem of Tian, Analysis and geometry in several complex variables (Trends in Mathematics), Birkhäuser, 1999, pp. 1-23 | MR | Zbl

[8] Manjunath Krishnapur From random matrices to random analytic functions, Ann. Probab., Volume 37 (2009) no. 1, pp. 314-346 | DOI | MR | Zbl

[9] Nir Lev; Joaquim Ortega-Cerdà Equidistribution estimates for Fekete points on complex manifolds, J. Eur. Math. Soc., Volume 18 (2016) no. 2, pp. 425-464 | MR | Zbl

[10] Jordi Marzo; Joaquim Ortega-Cerdà Equidistribution of Fekete points on the sphere, Constr. Approx., Volume 32 (2010) no. 3, pp. 513-521 | DOI | MR | Zbl

[11] Elizabeth S. Meckes; Mark W. Meckes Concentration and convergence rates for spectral measures of random matrices, Probab. Theory Relat. Fields, Volume 156 (2013) no. 1-2, pp. 145-164 | DOI | MR | Zbl

[12] Elizabeth S. Meckes; Mark W. Meckes Spectral measures of powers of random matrices, Electron. Commun. Probab., Volume 18 (2013), 78, 13 pages | DOI | MR | Zbl

[13] Elizabeth S. Meckes; Mark W. Meckes A rate of convergence for the circular law for the complex Ginibre ensemble, Ann. Fac. Sci. Toulouse, Math., Volume 24 (2015) no. 1, pp. 93-117 | DOI | Numdam | MR | Zbl

[14] Robin Pemantle; Yuval Peres Concentration of Lipschitz functionals of determinantal and other strong Rayleigh measures, Combin. Probab. Comput., Volume 23 (2014) no. 1, pp. 140-160 | DOI | MR | Zbl

[15] Brian Rider; Bálint Virág The noise in the circular law and the Gaussian free field, Int. Math. Res. Not. (2007) no. 2, rnm006, 32 pages | DOI | MR | Zbl

[16] Gang Tian On a set of polarized Kähler metrics on algebraic manifolds, J. Differ. Geom., Volume 32 (1990) no. 1, pp. 99-130 | DOI | Zbl

[17] Cédric Villani Optimal transport. Old and new, Grundlehren der Mathematischen Wissenschaften, 338, Springer, 2009, xxii+973 pages | DOI | Zbl

[18] Steve Zelditch Szegő kernels and a theorem of Tian, Int. Math. Res. Not. (1998) no. 6, pp. 317-331 | DOI | Zbl

Cited by Sources: