We find the precise rate at which the empirical measure associated to a -ensemble converges to its limiting measure. In our setting the -ensemble is a random point process on a compact complex manifold distributed according to the power of a determinant of sections in a positive line bundle. A particular case is the spherical ensemble of generalized random eigenvalues of pairs of matrices with independent identically distributed Gaussian entries.
On trouve le taux précis où la mesure empirique associée à un -ensemble converge vers sa mesure limite. Le -ensemble est un processus de points aléatoires sur une variété complexe compacte répartis selon la puissance d’un déterminant de sections d’un fibré de ligne positif. Un cas particulier est l’ensemble sphérique de valeurs propres généralisés de paires de matrices aléatoires avec entrées gaussiennes identiquement distribuées et independantes.
DOI: 10.5802/afst.1572
Tom Carroll 1; Jordi Marzo 2; Xavier Massaneda 2; Joaquim Ortega-Cerdà 2
@article{AFST_2018_6_27_2_377_0, author = {Tom Carroll and Jordi Marzo and Xavier Massaneda and Joaquim Ortega-Cerd\`a}, title = {Equidistribution and $\beta $-ensembles}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {377--387}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 27}, number = {2}, year = {2018}, doi = {10.5802/afst.1572}, mrnumber = {3831027}, zbl = {1410.60010}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1572/} }
TY - JOUR AU - Tom Carroll AU - Jordi Marzo AU - Xavier Massaneda AU - Joaquim Ortega-Cerdà TI - Equidistribution and $\beta $-ensembles JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2018 SP - 377 EP - 387 VL - 27 IS - 2 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1572/ DO - 10.5802/afst.1572 LA - en ID - AFST_2018_6_27_2_377_0 ER -
%0 Journal Article %A Tom Carroll %A Jordi Marzo %A Xavier Massaneda %A Joaquim Ortega-Cerdà %T Equidistribution and $\beta $-ensembles %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2018 %P 377-387 %V 27 %N 2 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1572/ %R 10.5802/afst.1572 %G en %F AFST_2018_6_27_2_377_0
Tom Carroll; Jordi Marzo; Xavier Massaneda; Joaquim Ortega-Cerdà. Equidistribution and $\beta $-ensembles. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 27 (2018) no. 2, pp. 377-387. doi : 10.5802/afst.1572. https://afst.centre-mersenne.org/articles/10.5802/afst.1572/
[1] The spherical ensemble and uniform distribution of points on the sphere, Electron. J. Probab., Volume 20 (2015), 23, 27 pages | DOI | MR | Zbl
[2] Fekete points and convergence towards equilibrium measures on complex manifolds, Acta Math., Volume 207 (2011) no. 1, pp. 1-27 | DOI | MR | Zbl
[3] Determinantal point processes and fermions on complex manifolds: large deviations and bosonization, Commun. Math. Phys., Volume 327 (2014) no. 1, pp. 1-47 | DOI | MR | Zbl
[4] Bergman kernels related to Hermitian line bundles over compact complex manifolds, Explorations in complex and Riemannian geometry (Contemporary Mathematics), Volume 332, American Mathematical Society, 2003, pp. 1-17 | DOI | MR | Zbl
[6] Exact results for a two-dimensional one-component plasma on a sphere, J. Physique Lett., Volume 42 (1981) no. 12, pp. 245-247 | DOI
[7] The Bergman kernel and a theorem of Tian, Analysis and geometry in several complex variables (Trends in Mathematics), Birkhäuser, 1999, pp. 1-23 | MR | Zbl
[8] From random matrices to random analytic functions, Ann. Probab., Volume 37 (2009) no. 1, pp. 314-346 | DOI | MR | Zbl
[9] Equidistribution estimates for Fekete points on complex manifolds, J. Eur. Math. Soc., Volume 18 (2016) no. 2, pp. 425-464 | MR | Zbl
[10] Equidistribution of Fekete points on the sphere, Constr. Approx., Volume 32 (2010) no. 3, pp. 513-521 | DOI | MR | Zbl
[11] Concentration and convergence rates for spectral measures of random matrices, Probab. Theory Relat. Fields, Volume 156 (2013) no. 1-2, pp. 145-164 | DOI | MR | Zbl
[12] Spectral measures of powers of random matrices, Electron. Commun. Probab., Volume 18 (2013), 78, 13 pages | DOI | MR | Zbl
[13] A rate of convergence for the circular law for the complex Ginibre ensemble, Ann. Fac. Sci. Toulouse, Math., Volume 24 (2015) no. 1, pp. 93-117 | DOI | Numdam | MR | Zbl
[14] Concentration of Lipschitz functionals of determinantal and other strong Rayleigh measures, Combin. Probab. Comput., Volume 23 (2014) no. 1, pp. 140-160 | DOI | MR | Zbl
[15] The noise in the circular law and the Gaussian free field, Int. Math. Res. Not. (2007) no. 2, rnm006, 32 pages | DOI | MR | Zbl
[16] On a set of polarized Kähler metrics on algebraic manifolds, J. Differ. Geom., Volume 32 (1990) no. 1, pp. 99-130 | DOI | Zbl
[17] Optimal transport. Old and new, Grundlehren der Mathematischen Wissenschaften, 338, Springer, 2009, xxii+973 pages | DOI | Zbl
[18] Szegő kernels and a theorem of Tian, Int. Math. Res. Not. (1998) no. 6, pp. 317-331 | DOI | Zbl
Cited by Sources: