We derive an explicit lower bound on the radius of a ball embedded in a quaternionic hyperbolic manifold (the maximal radius). We then deduce a lower bound on the volume of a quaternionic hyperbolic manifold. Both those bounds decrease with the dimension, when it is not clear that it should be the behaviour of the maximal radius or of the minimal volume. Related to that question, we note however that the Margulis constant of the quaternionic hyperbolic space of dimension is smaller than , so is decreasing as the dimension grows.
Nous donnons une borne inférieure explicite sur le rayon d’une boule plongée dans une variété hyperbolique quaternionique (le rayon maximal). Nous en déduisons une minoration du volume de telles variétés. Les deux bornes exhibées décroissent avec la dimension, et il n’est pas clair que l’on doive s’attendre au même comportement pour le rayon maximal ou pour le volume minimal. En lien avec cette question, nous remarquons cependant que la constante de Margulis de l’espace hyperbolique quaternionique de dimension est inférieure à , et décroit donc quand la dimension augmente.
Accepted:
Published online:
DOI: 10.5802/afst.1586
Zoé Philippe 1
@article{AFST_2018_6_27_5_875_0, author = {Zo\'e Philippe}, title = {Maximal radius of quaternionic hyperbolic manifolds}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {875--896}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 27}, number = {5}, year = {2018}, doi = {10.5802/afst.1586}, zbl = {1412.53073}, mrnumber = {3919543}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1586/} }
TY - JOUR AU - Zoé Philippe TI - Maximal radius of quaternionic hyperbolic manifolds JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2018 SP - 875 EP - 896 VL - 27 IS - 5 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1586/ DO - 10.5802/afst.1586 LA - en ID - AFST_2018_6_27_5_875_0 ER -
%0 Journal Article %A Zoé Philippe %T Maximal radius of quaternionic hyperbolic manifolds %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2018 %P 875-896 %V 27 %N 5 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1586/ %R 10.5802/afst.1586 %G en %F AFST_2018_6_27_5_875_0
Zoé Philippe. Maximal radius of quaternionic hyperbolic manifolds. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 27 (2018) no. 5, pp. 875-896. doi : 10.5802/afst.1586. https://afst.centre-mersenne.org/articles/10.5802/afst.1586/
[1] Lower bounds for the volume of hyperbolic -orbifolds, Pac. J. Math., Volume 237 (2008) no. 1, pp. 1-19 | DOI | MR | Zbl
[2] On volumes of hyperbolic orbifolds, Algebr. Geom. Topol., Volume 12 (2012) no. 1, pp. 215-233 | DOI | MR | Zbl
[3] On volumes of complex hyperbolic orbifolds, Mich. Math. J., Volume 63 (2014) no. 2, pp. 355-369 | DOI | MR | Zbl
[4] On volumes of arithmetic quotients of , Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 3 (2004) no. 4, pp. 749-770 | Numdam | MR | Zbl
[5] Hyperbolic orbifolds of small volume (2014) (https://arxiv.org/abs/1402.5394) | MR | Zbl
[6] On volumes of arithmetic quotients of , odd, Proc. Lond. Math. Soc., Volume 105 (2012) no. 3, pp. 541-570 | DOI | MR | Zbl
[7] Hyperbolic spaces, Contributions to analysis (a collection of papers dedicated to Lipman Bers), Academic Press, 1974, pp. 49-87 | Zbl
[8] Archimedean superrigidity and hyperbolic geometry, Ann. Math., Volume 135 (1992) no. 1, pp. 165-182 | DOI | MR | Zbl
[9] The spectral theorem in quaternions, Linear Algebra Appl., Volume 371 (2003), pp. 75-102 | DOI | MR | Zbl
[10] Jorgensen’s inequality for discrete groups in normed algebras, Duke Math. J., Volume 69 (1993) no. 3, pp. 593-614 | DOI | MR | Zbl
[11] Systole et rayon interne des variétés hyperboliques non compactes, Geom. Topol., Volume 19 (2015) no. 4, pp. 2039-2080 | DOI | MR | Zbl
[12] Tubes, Progress in Mathematics, 221, Birkhäuser, 2004, xiii+280 pages | Zbl
[13] Hyperbolic groups, Essays in group theory (Mathematical Sciences Research Institute Publications), Volume 8, Springer, 1987, pp. 75-263 | DOI | MR
[14] Harmonic maps into singular spaces and -adic superrigidity for lattices in groups of rank one, Publ. Math., Inst. Hautes Étud. Sci. (1992) no. 76, pp. 165-246 | DOI | MR | Zbl
[15] Arithmétique, Tableau Noir, 102, Calvage et Mounet, 2008, xvi+328 pages | Zbl
[16] Representations of polygons of finite groups, Geom. Topol., Volume 9 (2005), pp. 1915-1951 | DOI | MR | Zbl
[17] A proof of Selberg’s conjecture, Math. USSR, Sb., Volume 4 (1968) no. 1, pp. 147-152 | DOI | Zbl
[18] Geometry of quaternionic hyperbolic manifolds, Math. Proc. Camb. Philos. Soc., Volume 135 (2003) no. 2, pp. 291-320 | MR | Zbl
[19] Balls in hyperbolic manifolds, J. Lond. Math. Soc., Volume 40 (1989) no. 2, pp. 257-264 | DOI | MR | Zbl
[20] On discrete Möbius groups in all dimensions: a generalization of Jørgensen’s inequality, Acta Math., Volume 163 (1989) no. 3-4, pp. 253-289 | DOI | Zbl
[21] On the volumes of cusped, complex hyperbolic manifolds and orbifolds, Duke Math. J., Volume 94 (1998) no. 3, pp. 433-464 | DOI | MR | Zbl
[22] The geometry and topology of -manifolds, 1980 (electronic edition of the 1980 lecture notes, distributed by Princeton University. Available at http://library.msri.org/books/gt3m/)
[23] Discrete nilpotent subgroups of Lie groups, J. Differ. Geom., Volume 3 (1969), pp. 481-492 | DOI | MR
[24] Balls in complex hyperbolic manifolds, Sci. China, Math., Volume 57 (2014) no. 4, pp. 767-774 | MR | Zbl
[25] Quaternions and matrices of quaternions, Linear Algebra Appl., Volume 251 (1997), pp. 21-57 | DOI | MR | Zbl
Cited by Sources: