We study a one-dimensional model for a bent ferromagnetic nanowire. We prove the existence of static solutions describing either one domain or two domains separated by a wall. We address the stability of these solutions. In particular, we show that the asymptotically stable wall profiles are pinned at the bend even in presence of a small applied magnetic field.
Dans cet article, on étudie un modèle monodimensionnel de fil ferromagnétique présentant un coude. On explicite toutes les solutions stationnaires décrivant soit un domaine soit deux domaines séparés par un mur. On étudie ensuite la stabilité de ces solutions. On montre en particulier que certains profils de murs sont asymptotiquement stables, l’interprétation physique de ce résultat étant que les murs restent bloqués au niveau du coude, et ce même en présence d’un champ magnétique appliqué.
Accepted:
Published online:
DOI: 10.5802/afst.1587
Keywords: ferromagnetism, Landau–Lifschitz equation, stability, domain walls
Abdel Kader Al Sayed 1; Gilles Carbou 1
@article{AFST_2018_6_27_5_897_0, author = {Abdel Kader Al Sayed and Gilles Carbou}, title = {Walls in infinite bent ferromagnetic nanowires}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {897--924}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 27}, number = {5}, year = {2018}, doi = {10.5802/afst.1587}, mrnumber = {3919544}, zbl = {1428.35552}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1587/} }
TY - JOUR AU - Abdel Kader Al Sayed AU - Gilles Carbou TI - Walls in infinite bent ferromagnetic nanowires JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2018 SP - 897 EP - 924 VL - 27 IS - 5 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1587/ DO - 10.5802/afst.1587 LA - en ID - AFST_2018_6_27_5_897_0 ER -
%0 Journal Article %A Abdel Kader Al Sayed %A Gilles Carbou %T Walls in infinite bent ferromagnetic nanowires %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2018 %P 897-924 %V 27 %N 5 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1587/ %R 10.5802/afst.1587 %G en %F AFST_2018_6_27_5_897_0
Abdel Kader Al Sayed; Gilles Carbou. Walls in infinite bent ferromagnetic nanowires. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 27 (2018) no. 5, pp. 897-924. doi : 10.5802/afst.1587. https://afst.centre-mersenne.org/articles/10.5802/afst.1587/
[1] Pseudo-differential operators and the Nash-Moser theorem, Graduate Studies in Mathematics, 82, American Mathematical Society, 2007, vii+168 pages (Translated from the 1991 French original by Stephen S. Wilson) | MR | Zbl
[2] Circuits ferromagnetic of nano wires (in preparation)
[3] Micromagnetics, John Wiley & Sons, 1963
[4] Domain walls dynamics in a nanowire subject to an electric current, J. Differ. Equations, Volume 258 (2015) no. 8, pp. 2941-2965 | DOI | MR | Zbl
[5] Stability for static walls in ferromagnetic nanowires, Discrete Contin. Dyn. Syst, Volume 6 (2006) no. 2, pp. 273-290 | MR | Zbl
[6] Stabilization of Walls for Nano-Wires of Finite Length, ESAIM, Control Optim. Calc. Var., Volume 18 (2012) no. 1, pp. 1-21 | DOI | Numdam | MR | Zbl
[7] Control of traveling walls in a ferromagnetic nanowire, Discrete Contin. Dyn. Syst (2007) | Zbl
[8] Magnetotransport properties of bent ferromagnetic nanowires, J. Appl. Phys., Volume 93 (2003), 7616, 9 pages (Art. ID 7616) | DOI
[9] Room temperature Domain Wall Pinning in Bent Ferromagnetic Nanowires (2003) (https://arxiv.org/abs/cond-mat/0308579)
[10] Optimal stability criterion for a wall in ferromagnetic wire submitted to a magnetic field, J. Differ. Equations, Volume 250 (2011) no. 8, pp. 3349-3361 | DOI | MR | Zbl
[11] Stability properties of steady-states for a network of ferromagnetic nanowires, J. Differ. Equations, Volume 253 (2012) no. 6, pp. 1709-1728 | DOI | MR | Zbl
[12] Electrodynamique des milieux continues, Physique Théorique, VIII, Editions de Moscou, 1969
[13] Magnetic Domain-Wall Racetrack Memory, Science, Volume 320 (2008), pp. 190-194 | DOI
[14] Reduce models for ferromagnetic nanowires, IMA J. Appl. Math., Volume 77 (2012) no. 2, pp. 220-235 | Zbl
[15] Stability of travelling wave solutions for the Landau-Lifshitz equation, Hiroshima Math. J., Volume 41 (2011) no. 3, pp. 367-388 | DOI | MR | Zbl
[16] Domain wall dynamics in nanowires and nanostrips, Spin Dynamics in Confined Magnetic Structures III (Topics in Applied Physics), Volume 101, Springer, 2006, pp. 161-206 | DOI
Cited by Sources: