Soit
Let
Accepté le :
Publié le :
DOI : 10.5802/afst.1590
Nicolás Arancibia 1 ; Colette Mœglin 2 ; David Renard 3

@article{AFST_2018_6_27_5_1023_0, author = {Nicol\'as Arancibia and Colette M{\oe}glin and David Renard}, title = {Paquets {d{\textquoteright}Arthur} des groupes classiques et unitaires}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {1023--1105}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {6e s{\'e}rie, 27}, number = {5}, year = {2018}, doi = {10.5802/afst.1590}, zbl = {1420.22018}, mrnumber = {3919547}, language = {fr}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1590/} }
TY - JOUR AU - Nicolás Arancibia AU - Colette Mœglin AU - David Renard TI - Paquets d’Arthur des groupes classiques et unitaires JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2018 SP - 1023 EP - 1105 VL - 27 IS - 5 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1590/ DO - 10.5802/afst.1590 LA - fr ID - AFST_2018_6_27_5_1023_0 ER -
%0 Journal Article %A Nicolás Arancibia %A Colette Mœglin %A David Renard %T Paquets d’Arthur des groupes classiques et unitaires %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2018 %P 1023-1105 %V 27 %N 5 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1590/ %R 10.5802/afst.1590 %G fr %F AFST_2018_6_27_5_1023_0
Nicolás Arancibia; Colette Mœglin; David Renard. Paquets d’Arthur des groupes classiques et unitaires. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 27 (2018) no. 5, pp. 1023-1105. doi : 10.5802/afst.1590. https://afst.centre-mersenne.org/articles/10.5802/afst.1590/
[1] The Langlands classification and irreducible characters for real reductive groups, Progress in Mathematics, 104, Birkhäuser, 1992, xii+318 pages | DOI | MR | Zbl
[2] Algorithms for representation theory of real reductive groups, J. Inst. Math. Jussieu, Volume 8 (2009) no. 2, pp. 209-259 | DOI | MR | Zbl
[3] Endoscopic groups and packets of nontempered representations, Compos. Math., Volume 64 (1987) no. 3, pp. 271-309 | MR | Zbl
[4] Paquets d’Arthur des représentations cohomologiques, Institut de Mathématiques de Jussieu (France) (2015) (Ph. D. Thesis)
[5] On some problems suggested by the trace formula, Lie group representations, II (College Park, Md., 1982/1983) (Lecture Notes in Mathematics), Volume 1041, Springer, 1984, pp. 1-49 | DOI | MR | Zbl
[6] Intertwining operators and residues. I. Weighted characters, J. Funct. Anal., Volume 84 (1989) no. 1, pp. 19-84 | DOI | MR | Zbl
[7] The
[8] Unipotent automorphic representations : conjectures, Orbites unipotentes et représentations, II Groupes
[9] A stable trace formula III. Proof of the main theorems, Ann. Math., Volume 158 (2003) no. 2, pp. 769-873 | MR | Zbl
[10] The endoscopic classification of representations. Orthogonal and symplectic groups, Colloquium Publications, 61, American Mathematical Society, 2013, xviii+590 pages | MR | Zbl
[11] Unipotent representations of complex semisimple groups, Ann. Math., Volume 121 (1985) no. 1, pp. 41-110 | DOI | MR | Zbl
[12] A proof of Kirillov’s conjecture, Ann. Math., Volume 158 (2003) no. 1, pp. 207-252 | DOI | MR | Zbl
[13] Localisation de
[14] The Hodge conjecture and arithmetic quotients of complex balls, Acta Math., Volume 216 (2016) no. 1, pp. 1-125 | DOI | MR | Zbl
[15] Hodge type theorems for arithmetic manifolds associated to orthogonal groups, Int. Math. Res. Not. (2017) no. 15, pp. 4495-4624 | DOI | MR | Zbl
[16] Automorphic
[17] Quelques remarques sur les distributions invariantes dans les algèbres de Lie réductives, Noncommutative harmonic analysis (Progress in Mathematics), Volume 220, Birkhäuser, 2004, pp. 119-130 | MR | Zbl
[18] Corps de nombres peu ramifiés et formes automorphes autoduales, J. Am. Math. Soc., Volume 22 (2009) no. 2, pp. 467-519 | DOI | MR | Zbl
[19] Formes automorphes et voisins de Kneser des réseaux de Niemaier (http://gaetan.chenevier.perso.math.cnrs.fr/pub.html) | Zbl
[20] On the vanishing of some non-semisimple orbital integrals, Expo. Math., Volume 28 (2010) no. 3, pp. 276-289 | DOI | MR | Zbl
[21] Level One algebraic cusp forms of classical groups of small rank, Mem. Am. Math. Soc., Volume 237 (2015) no. 1121 | MR | Zbl
[22] Changement de base pour les représentations tempérées des groupes réductifs réels, Ann. Sci. Éc. Norm. Supér., Volume 15 (1982) no. 1, pp. 45-115 | Numdam | MR | Zbl
[23] Twisted endoscopy in miniature (http://people.math.carleton.ca/~mezo/research.html)
[24] The Bruhat order on the involutions of the symmetric group, J. Algebr. Comb., Volume 20 (2004) no. 3, pp. 243-261 | DOI | MR | Zbl
[25] Lie algebra cohomology and the resolution of certain Harish-Chandra modules, Math. Ann., Volume 267 (1984) no. 3, pp. 377-393 | DOI | MR | Zbl
[26] Stable base change
[27] Intertwining operators for semisimple groups, Ann. Math., Volume 93 (1971), pp. 489-578 | DOI | MR | Zbl
[28] Intertwining operators for semisimple groups. II, Invent. Math., Volume 60 (1980) no. 1, pp. 9-84 | DOI | MR | Zbl
[29] Cohomological induction and unitary representations, Princeton Mathematical Series, 45, Princeton University Press, 1995, xx+948 pages | MR | Zbl
[30] Shimura varieties and
[31] Foundations of twisted endoscopy, Astérisque, 255, Société Mathématique de France, 1999, vi+190 pages | Numdam | MR | Zbl
[32]
[33] La formule des traces tordue d’après le Friday Morning Seminar, CRM Monograph Series, 31, American Mathematical Society, 2013, xxvi+234 pages (With a foreword by Robert Langlands) | MR | Zbl
[34] On the classification of irreducible representations of real algebraic groups, Representation theory and harmonic analysis on semisimple Lie groups (Mathematical Surveys and Monographs), Volume 31, American Mathematical Society, 1989, pp. 101-170 | DOI | MR | Zbl
[35] On the representations of
[36] Pattern avoidance and smoothness of closures for orbits of a symmetric subgroup in the flag variety, J. Algebra, Volume 322 (2009) no. 8, pp. 2713-2730 | DOI | MR | Zbl
[37] Tempered spectral transfer in the twisted endoscopy of real groups, J. Inst. Math. Jussieu, Volume 15 (2016) no. 3, pp. 569-612 | DOI | MR | Zbl
[38] Localization and representation theory of reductive Lie groups (http://www.math.utah.edu/~milicic/Eprints/book)
[39] Multiplicité 1 dans les paquets d’Arthur aux places
[40] Paquets stables des séries discrètes accessibles par endoscopie tordue ; leur paramètre de Langlands, Automorphic forms and related geometry : assessing the legacy of I. I. Piatetski-Shapiro (Contemporary Mathematics), Volume 614, American Mathematical Society, 2014, pp. 295-336 | DOI | MR | Zbl
[41] Endoscopie tordue sur un corps local, Stabilisation de la formule des traces tordue I (Progress in Mathematics), Volume 316, Birkhäuser, 2016, pp. 1-180 | DOI | Zbl
[42] Stabilisation spectrale, Stabilisation de la formule des traces tordue II (Progress in Mathematics), Volume 317, Birkhäuser, 2016, pp. 1145-1255 | DOI
[43] La formule des traces locale tordue, Mem. Am. Math. Soc., Volume 251 (2018) no. 1198, v+183 pages | DOI | MR | Zbl
[44] Endoscopic classification of representations of quasi-split unitary groups, Mem. Am. Math. Soc., Volume 235 (2015) no. 1108, vi+248 pages | DOI | MR | Zbl
[45] The standard sign conjecture on algebraic cycles : the case of Shimura varieties (http://arxiv.org/abs/1408.0461, à paraître dans J. Reine Angew. Math.) | DOI | Zbl
[46] On the unitary dual of real reductive Lie groups and the
[47] Intégrales d’entrelacement et fonctions de Whittaker, Bull. Soc. Math. Fr., Volume 99 (1971), pp. 3-72 | DOI | MR | Zbl
[48] On certain
[49] Eisenstein series and automorphic
[50] The multiplicity one theorem for
[51] Characters and inner forms of a quasi-split group over
[52] On geometric transfer in real twisted endoscopy, Ann. Math., Volume 176 (2012) no. 3, pp. 1919-1985 | DOI | MR | Zbl
[53] The unitary dual of
[54]
[55] Dimensions of spaces of level one automorphic forms for split classical groups using the trace formula, Ann. Sci. Éc. Norm. Supér., Volume 50 (2017) no. 2, pp. 269-344 | DOI | MR | Zbl
[56] Representations of real reductive Lie groups, Progress in Mathematics, 15, Birkhäuser, 1981, xvii+754 pages | MR | Zbl
[57] Irreducible characters of semisimple Lie groups. IV. Character-multiplicity duality, Duke Math. J., Volume 49 (1982) no. 4, pp. 943-1073 http://projecteuclid.org/euclid.dmj/1077315538 | MR | Zbl
[58] Irreducible characters of semisimple Lie groups. III. Proof of Kazhdan-Lusztig conjecture in the integral case, Invent. Math., Volume 71 (1983) no. 2, pp. 381-417 | DOI | MR | Zbl
[59] The unitary dual of
[60] Unitary representations with nonzero cohomology, Compos. Math., Volume 53 (1984) no. 1, pp. 51-90 | MR | Zbl
[61] Orbits in the flag variety and images of the moment map for classical groups. I, Represent. Theory, Volume 1 (1997), pp. 329-404 | DOI | MR | Zbl
Cité par Sources :