logo AFST
One-sided convergence in the Boltzmann–Grad limit
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 27 (2018) no. 5, pp. 985-1022.

Ce papier présente diverses contributions basées sur le travail fondamental de Lanford [21] qui a permis d’obtenir l’équation de Boltzmann à partir de la dynamique (réversible) des sphères dures dans la limite de densité faible.

On s’intéresse en particulier aux hypothèses sur la donnée initiale et sur la façon dont elles codent l’irréversibilité. On montre que l’impossibilité de renverser le sens du temps dans l’équation de Boltzmann (qui est exprimée notamment dans le théorème H) est liée à l’absence de convergence des marginales d’ordre supérieur sur des ensembles singuliers. Un contre exemple explicite permet de caractériser les ensembles, de mesure asymptotiquement nulle, où la donnée initiale doit converger pour obtenir la dynamique de Boltzmann.

We review various contributions on the fundamental work of Lanford [21] deriving the Boltzmann equation from (reversible) hard-sphere dynamics in the low density limit.

We focus especially on the assumptions made on the initial data and on how they encode irreversibility. The impossibility to reverse time in the Boltzmann equation (expressed for instance by Boltzmann’s H-theorem) is related to the lack of convergence of higher order marginals on some singular sets. Explicit counterexamples single out the sets with vanishing measure where the initial data should converge in order to produce the Boltzmann dynamics.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/afst.1589
Thierry Bodineau 1 ; Isabelle Gallagher 2 ; Laure Saint-Raymond 3 ; Sergio Simonella 3

1 CMAP, Ecole Polytechnique, CNRS, Université Paris-Saclay, Route de Saclay, 91128 Palaiseau Cedex, France
2 DMA, École normale supérieure, CNRS, PSL Research University, 75005 Paris, France and UFR de mathématiques, Université Paris-Diderot, Sorbonne Paris-Cité, 75013 Paris, France
3 ENS de Lyon, Université de Lyon, UMPA UMR 5669 CNRS, 46 allée d’Italie, 69364 Lyon Cedex 07, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AFST_2018_6_27_5_985_0,
     author = {Thierry Bodineau and Isabelle Gallagher and Laure Saint-Raymond and Sergio Simonella},
     title = {One-sided convergence in the {Boltzmann{\textendash}Grad} limit},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {985--1022},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 27},
     number = {5},
     year = {2018},
     doi = {10.5802/afst.1589},
     mrnumber = {3919546},
     zbl = {1416.35174},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1589/}
}
TY  - JOUR
AU  - Thierry Bodineau
AU  - Isabelle Gallagher
AU  - Laure Saint-Raymond
AU  - Sergio Simonella
TI  - One-sided convergence in the Boltzmann–Grad limit
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2018
SP  - 985
EP  - 1022
VL  - 27
IS  - 5
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1589/
DO  - 10.5802/afst.1589
LA  - en
ID  - AFST_2018_6_27_5_985_0
ER  - 
%0 Journal Article
%A Thierry Bodineau
%A Isabelle Gallagher
%A Laure Saint-Raymond
%A Sergio Simonella
%T One-sided convergence in the Boltzmann–Grad limit
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2018
%P 985-1022
%V 27
%N 5
%I Université Paul Sabatier, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1589/
%R 10.5802/afst.1589
%G en
%F AFST_2018_6_27_5_985_0
Thierry Bodineau; Isabelle Gallagher; Laure Saint-Raymond; Sergio Simonella. One-sided convergence in the Boltzmann–Grad limit. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 27 (2018) no. 5, pp. 985-1022. doi : 10.5802/afst.1589. https://afst.centre-mersenne.org/articles/10.5802/afst.1589/

[1] Roger Keith Alexander The Infinite Hard Sphere System, University of California (USA) (1975) (Ph. D. Thesis) | MR

[2] Leif Arkeryd; Carlo Cercignani Global existence in L 1 for the Enskog equation and convergence of the solutions to solutions of the Boltzmann equation, J. Stat. Phys., Volume 59 (1990) no. 3-4, pp. 845-867 | DOI | MR | Zbl

[3] Nathalie Ayi From Newton’s law to the linear Boltzmann equation without cut-off, Commun. Math. Phys., Volume 350 (2017) no. 3, pp. 1219-1274 | MR | Zbl

[4] Claude Bardos Problèmes aux limites pour les équations aux dérivées partielles du premier ordre à coefficients réels; théorèmes d’approximation; application à l’équation de transport, Ann. Sci. Éc. Norm. Supér., Volume 3 (1970) no. 2, pp. 185-233 | DOI | Zbl

[5] Henk van Beijeren; Oscar E. III Lanford; Joel L. Lebowitz; Herbert Spohn Equilibrium time correlation functions in the low-density limit, J. Stat. Phys., Volume 22 (1980) no. 2, pp. 237-257 | DOI | MR

[6] Nicola Bellomo; Mirosław Lachowicz; Jacek Polewczak; Giuseppe Toscani Mathematical Topics in Nonlinear Kinetic Theory II: The Enskog Equation, Series on Advances in Mathematics for Applied Sciences, World Scientific, 1991, xii+207 pages | Zbl

[7] Thierry Bodineau; Isabelle Gallagher; Laure Saint-Raymond The Brownian motion as the limit of a deterministic system of hard-spheres, Invent. Math., Volume 203 (2015) no. 2, pp. 1-61 | MR | Zbl

[8] Thierry Bodineau; Isabelle Gallagher; Laure Saint-Raymond From hard sphere dynamics to the Stokes-Fourier equations: an L 2 analysis of the Boltzmann-Grad limit, Ann. PDE, Volume 3 (2017) no. 1, 2, 118 pages (Art ID 2, 118 p.) | MR | Zbl

[9] Ludwig E. Boltzmann Lectures on Gas Theory / Vorlesungen über Gastheorie (1896), University of California Press, 1964 (english translation by S. G. Brush)

[10] Ludwig E. Boltzmann Further Studies on the Thermal Equilibrium of Gas Molecules (1872), The Kinetic Theory of Gases (History of Modern Physical Sciences), Volume 1, World Scientific, 2003, pp. 262-349 | DOI

[11] Carlo Cercignani On the Boltzmann equation for rigid spheres, Transp. Theory Stat. Phys., Volume 2 (1972), pp. 211-225 | MR | Zbl

[12] Carlo Cercignani Ludwig Boltzmann, The man who trusted atoms, Oxford University Press, 1998, xvi+359 pages | Zbl

[13] Carlo Cercignani; Reinhard Illner; Mario Pulvirenti The Mathematical Theory of Dilute Gases, Applied Mathematical Sciences, 106, Springer, 1994, vii+347 pages | MR | Zbl

[14] Ryan Denlinger The propagation of chaos for a rarefied gas of hard spheres in the whole space, Arch. Ration. Mech. Anal., Volume 229 (2018) no. 2, pp. 885-952 | DOI | MR | Zbl

[15] Isabelle Gallagher; Laure Saint-Raymond; Benjamin Texier From Newton to Boltzmann : the case of hard-spheres and short-range potentials, Zürich Lectures in Advanced Mathematics, European Mathematical Society, 2014, xii+137 pages | Zbl

[16] Sheldon Goldstein; Joel L. Lebowitz On the (Boltzmann) Entropy of Non-equilibrium Systems, Physica D, Volume 193 (2004) no. 1-4, pp. 53-66 | DOI | MR | Zbl

[17] Harold Grad Principles of the kinetic theory of gases, Thermodynamik der Gase (Handbuch der Physik), Volume 3, Springer, 1958, pp. 205-294 | DOI

[18] Edwin Hewitt; Leonard J. Savage Symmetric measures on Cartesian products, Trans. Am. Math. Soc., Volume 80 (1955), pp. 470-501 | DOI | MR | Zbl

[19] F. G. King BBGKY hierarchy for positive potentials, University of California (USA) (19785) (Ph. D. Thesis)

[20] Roman Kotecký Cluster expansions, Encyclopedia of Mathematical Physics, Elsevier, 2006, pp. 531-536 | DOI

[21] Oscar E. III Lanford Time evolution of large classical systems, Dynamical systems, theory and applications (Lecture Notes in Physics), Volume 38, Springer, 1975, pp. 1-111 | DOI | MR | Zbl

[22] Oscar E. III Lanford On a derivation of the Boltzmann equation (Astérisque), Volume 40, Société Mathématique de France, 1976, pp. 117-137 | Numdam | Zbl

[23] Joel L. Lebowitz From Time-Symmetric Microscopic Dynamics to Time-Asymmetric Macroscopic Behavior: An Overview, Boltzmann’s legacy (ESI Lectures in Mathematics and Physics) (2007), pp. 63-89

[24] J. Loschmidt Anz. Kais. Akad. Wiss., Math. Naturwiss. Classe, 73 (1876), pp. 128-142

[25] Suren Poghosyan; Daniel Ueltschi Abstract cluster expansion with applications to statistical mechanical systems, J. Math. Phys., Volume 50 (2009) no. 5, 053509, 17 pages (Art. ID 053509, 17 p.) | MR | Zbl

[26] Elena Pulvirenti; Dimitrios Tsagkarogiannis Cluster Expansion in the Canonical Ensemble, Commun. Math. Phys., Volume 316 (2012) no. 2, pp. 289-306 | DOI | MR | Zbl

[27] Mario Pulvirenti; Chiara Saffirio; Sergio Simonella On the validity of the Boltzmann equation for short range potentials, Rev. Math. Phys., Volume 26 (2014) no. 2, 1450001, 64 pages (Art. ID 1450001, 64 p.) | MR | Zbl

[28] Mario Pulvirenti; Sergio Simonella On the evolution of the empirical measure for the hard-sphere dynamics, Bull. Inst. Math., Acad. Sin., Volume 10 (2015) no. 2, pp. 171-204 | MR | Zbl

[29] Mario Pulvirenti; Sergio Simonella The Boltzmann-Grad Limit of a Hard Sphere System: Analysis of the Correlation Error, Invent. Math., Volume 207 (2017) no. 3, pp. 1135-1237 | DOI | MR | Zbl

[30] Sergio Simonella Evolution of correlation functions in the hard sphere dynamics, J. Stat. Phys., Volume 155 (2014) no. 6, pp. 1191-1221 | DOI | MR | Zbl

[31] Herbert Spohn Boltzmann hierarchy and Boltzmann equation, Kinetic theories and the Boltzmann equation (Montecatini, 1981) (Lecture Notes in Mathematics), Volume 1048, Springer, 1984, pp. 207-220 | DOI | MR | Zbl

[32] Herbert Spohn Large scale dynamics of interacting particles, Texts and Monographs in Physics, 174, Springer, 1991, xi+342 pages | Zbl

[33] Herbert Spohn Loschmidt’s Reversibility Argument and the H-Theorem, Pioneering Ideas for the Physical and Chemical Sciences, Springer, 1997, pp. 153-157 | DOI

[34] Daniel Ueltschi Cluster expansions and correlation functions, Mosc. Math. J., Volume 4 (2004) no. 2, pp. 511-522 | DOI | MR | Zbl

[35] Seiji Ukai The Boltzmann-Grad Limit and Cauchy-Kovalevskaya Theorem, Japan J. Ind. Appl. Math., Volume 18 (2001) no. 2, pp. 383-392 | DOI | MR | Zbl

Cité par Sources :