We build and study a multidimensional version of the Curie-Weiss model of self-organized criticality we have designed in [2]. For symmetric distributions satisfying some integrability condition, we prove that the sum of the randoms vectors in the model has a typical critical asymptotic behaviour. The fluctuations are of order and the limiting law has a density proportional to the exponential of a fourth-degree polynomial.
Nous construisons et étudions une version multi-dimensionnelle du modèle d’Ising Curie-Weiss de criticalité auto-organisée que nous avons introduit dans [2]. Pour des distributions vérifiant une certaine condition d’intégrabilité, nous montrons que la somme des variables aléatoires du modèle a un comportement asymptotique critique typique. Les fluctuations sont d’ordre et la loi limite admet une densité proportionnelle à l’exponentielle d’un polynôme de degré quatre.
Accepted:
Published online:
DOI: 10.5802/afst.1594
Keywords: Ising Curie-Weiss, SOC, Laplace’s method
Matthias Gorny 1
@article{AFST_2019_6_28_1_91_0, author = {Matthias Gorny}, title = {The {Curie-Weiss} {Model} of {SOC} in {Higher} {Dimension}}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {91--108}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 28}, number = {1}, year = {2019}, doi = {10.5802/afst.1594}, zbl = {1420.60036}, mrnumber = {3940793}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1594/} }
TY - JOUR AU - Matthias Gorny TI - The Curie-Weiss Model of SOC in Higher Dimension JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2019 SP - 91 EP - 108 VL - 28 IS - 1 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1594/ DO - 10.5802/afst.1594 LA - en ID - AFST_2019_6_28_1_91_0 ER -
%0 Journal Article %A Matthias Gorny %T The Curie-Weiss Model of SOC in Higher Dimension %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2019 %P 91-108 %V 28 %N 1 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1594/ %R 10.5802/afst.1594 %G en %F AFST_2019_6_28_1_91_0
Matthias Gorny. The Curie-Weiss Model of SOC in Higher Dimension. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 28 (2019) no. 1, pp. 91-108. doi : 10.5802/afst.1594. https://afst.centre-mersenne.org/articles/10.5802/afst.1594/
[1] Convergence of probability measures, Wiley Series in Probability and Statistics: Probability and Statistics, John Wiley & Sons, 1999 (A Wiley-Interscience Publication) | DOI | Zbl
[2] A Curie-Weiss model of self-organized criticality, Ann. Probab., Volume 44 (2016) no. 1, pp. 444-478 | DOI | MR | Zbl
[3] Large deviations techniques and applications, Stochastic Modelling and Applied Probability, 38, Springer, 2010 Corrected reprint of the second (1998) edition | MR | Zbl
[4] Limit theorems for sums of dependent random variables occurring in statistical mechanics, Z. Wahrsch. Verw. Gebiete, Volume 44 (1978) no. 2, pp. 117-139 | DOI | MR | Zbl
[5] A Curie-Weiss model of self-organized criticality: the Gaussian case, Markov Process. Related Fields, Volume 20 (2014) no. 3, pp. 563-576 | MR | Zbl
[6] Un modèle d’Ising Curie–Weiss de criticalité auto–organisée, Université Paris-Sud (France) (2015) (Ph. D. Thesis)
[7] The Cramér condition for the Curie-Weiss model of SOC, Braz. J. Probab. Stat., Volume 30 (2016) no. 3, pp. 401-431 | DOI | MR | Zbl
[8] A dynamical Curie-Weiss model of SOC: the Gaussian case, Ann. Inst. Henri Poincaré Probab. Stat., Volume 53 (2017) no. 2, pp. 658-678 | DOI | MR | Zbl
[9] Fluctuations of the self-normalized sum in the Curie-Weiss model of SOC, J. Stat. Phys., Volume 160 (2015) no. 3, pp. 513-518 | DOI | MR | Zbl
Cited by Sources: