The Curie-Weiss Model of SOC in Higher Dimension
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 28 (2019) no. 1, pp. 91-108.

We build and study a multidimensional version of the Curie-Weiss model of self-organized criticality we have designed in [2]. For symmetric distributions satisfying some integrability condition, we prove that the sum S n of the randoms vectors in the model has a typical critical asymptotic behaviour. The fluctuations are of order n 3/4 and the limiting law has a density proportional to the exponential of a fourth-degree polynomial.

Nous construisons et étudions une version multi-dimensionnelle du modèle d’Ising Curie-Weiss de criticalité auto-organisée que nous avons introduit dans [2]. Pour des distributions vérifiant une certaine condition d’intégrabilité, nous montrons que la somme S n des variables aléatoires du modèle a un comportement asymptotique critique typique. Les fluctuations sont d’ordre n 3/4 et la loi limite admet une densité proportionnelle à l’exponentielle d’un polynôme de degré quatre.

Received:
Accepted:
Published online:
DOI: 10.5802/afst.1594
Classification: 60F05, 60K35
Keywords: Ising Curie-Weiss, SOC, Laplace’s method

Matthias Gorny 1

1 Université Paris-Sud and ENS Paris, Paris (France)
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AFST_2019_6_28_1_91_0,
     author = {Matthias Gorny},
     title = {The {Curie-Weiss} {Model} of {SOC} in {Higher} {Dimension}},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {91--108},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 28},
     number = {1},
     year = {2019},
     doi = {10.5802/afst.1594},
     zbl = {1420.60036},
     mrnumber = {3940793},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1594/}
}
TY  - JOUR
AU  - Matthias Gorny
TI  - The Curie-Weiss Model of SOC in Higher Dimension
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2019
SP  - 91
EP  - 108
VL  - 28
IS  - 1
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1594/
DO  - 10.5802/afst.1594
LA  - en
ID  - AFST_2019_6_28_1_91_0
ER  - 
%0 Journal Article
%A Matthias Gorny
%T The Curie-Weiss Model of SOC in Higher Dimension
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2019
%P 91-108
%V 28
%N 1
%I Université Paul Sabatier, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1594/
%R 10.5802/afst.1594
%G en
%F AFST_2019_6_28_1_91_0
Matthias Gorny. The Curie-Weiss Model of SOC in Higher Dimension. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 28 (2019) no. 1, pp. 91-108. doi : 10.5802/afst.1594. https://afst.centre-mersenne.org/articles/10.5802/afst.1594/

[1] P. Billingsley Convergence of probability measures, Wiley Series in Probability and Statistics: Probability and Statistics, John Wiley & Sons, 1999 (A Wiley-Interscience Publication) | DOI | Zbl

[2] R. Cerf; M. Gorny A Curie-Weiss model of self-organized criticality, Ann. Probab., Volume 44 (2016) no. 1, pp. 444-478 | DOI | MR | Zbl

[3] A. Dembo; O. Zeitouni Large deviations techniques and applications, Stochastic Modelling and Applied Probability, 38, Springer, 2010 Corrected reprint of the second (1998) edition | MR | Zbl

[4] R. S. Ellis; C. M. Newman Limit theorems for sums of dependent random variables occurring in statistical mechanics, Z. Wahrsch. Verw. Gebiete, Volume 44 (1978) no. 2, pp. 117-139 | DOI | MR | Zbl

[5] M. Gorny A Curie-Weiss model of self-organized criticality: the Gaussian case, Markov Process. Related Fields, Volume 20 (2014) no. 3, pp. 563-576 | MR | Zbl

[6] M. Gorny Un modèle d’Ising Curie–Weiss de criticalité auto–organisée, Université Paris-Sud (France) (2015) (Ph. D. Thesis)

[7] M. Gorny The Cramér condition for the Curie-Weiss model of SOC, Braz. J. Probab. Stat., Volume 30 (2016) no. 3, pp. 401-431 | DOI | MR | Zbl

[8] M. Gorny A dynamical Curie-Weiss model of SOC: the Gaussian case, Ann. Inst. Henri Poincaré Probab. Stat., Volume 53 (2017) no. 2, pp. 658-678 | DOI | MR | Zbl

[9] M. Gorny; S. R. S. Varadhan Fluctuations of the self-normalized sum in the Curie-Weiss model of SOC, J. Stat. Phys., Volume 160 (2015) no. 3, pp. 513-518 | DOI | MR | Zbl

Cited by Sources: