logo AFST
Automorphismes loxodromiques de surfaces abéliennes réelles
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 28 (2019) no. 1, pp. 109-127.

On étudie les automorphismes réels de degré dynamique >1 des surfaces complexes compactes munies d’une structure réelle. On montre qu’une surface possédant un tel automorphisme est projective. On classifie des surfaces abéliennes réelles en huit types, selon le nombre de composantes connexes de la partie réelle et la simplicité de la surface abélienne complexe sous-jacente. Pour chacun des huit types, on détermine l’ensemble des valeurs de degrés dynamiques qui peuvent être réalisées par des automorphismes réels. On montrera aussi que le degré dynamique minimum sur une surface K3 complexe ne peut pas être réalisée sur une surface K3 réelle.

We study dynamical degree >1 real automorphisms of compact complex surfaces with a real structure. We show that a surface with such an automorphism is necessarily projective. We classify real abelian surfaces into eight types, according to the number of connected components of the real part and the simplicity of the underlying complex abelian surface. For each type, we determine the set of values of dynamical degrees which can be realized by real automorphisms. We also prove that the minimum dynamical degree on a complex K3 surface can not be realized on a real K3 surface.

Reçu le :
Accepté le :
Publié le :
DOI : https://doi.org/10.5802/afst.1595
@article{AFST_2019_6_28_1_109_0,
     author = {ShengYuan Zhao},
     title = {Automorphismes loxodromiques de surfaces ab\'eliennes r\'eelles},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {109--127},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {6e s{\'e}rie, 28},
     number = {1},
     year = {2019},
     doi = {10.5802/afst.1595},
     language = {fr},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1595/}
}
TY  - JOUR
AU  - ShengYuan Zhao
TI  - Automorphismes loxodromiques de surfaces abéliennes réelles
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2019
DA  - 2019///
SP  - 109
EP  - 127
VL  - 6e s{\'e}rie, 28
IS  - 1
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1595/
UR  - https://doi.org/10.5802/afst.1595
DO  - 10.5802/afst.1595
LA  - fr
ID  - AFST_2019_6_28_1_109_0
ER  - 
ShengYuan Zhao. Automorphismes loxodromiques de surfaces abéliennes réelles. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 28 (2019) no. 1, pp. 109-127. doi : 10.5802/afst.1595. https://afst.centre-mersenne.org/articles/10.5802/afst.1595/

[1] Simon Brandhorst; Víctor González-Alonso Automorphisms of minimal entropy on supersingular K3 surfaces, J. Lond. Math. Soc., Volume 97 (2018) no. 2, pp. 282-305 | Article | MR 3789848

[2] Serge Cantat Dynamique des automorphismes des surfaces projectives complexes, C. R. Math. Acad. Sci. Paris, Volume 328 (1999) no. 10, pp. 901-906 | Article | MR 1689873

[3] Serge Cantat Dynamics of automorphisms of compact complex surfaces, Frontiers in complex dynamics (Princeton Mathematics Series) Volume 51, Princeton University Press, 2014, pp. 463-514 | MR 3289919

[4] Mikhaïl Gromov On the entropy of holomorphic maps, Enseign. Math. (2), Volume 49 (2003) no. 3-4, pp. 217-235 | MR 2026895

[5] Curtis T. McMullen Dynamics on K3 surfaces : Salem numbers and Siegel disks, J. Reine Angew. Math., Volume 545 (2002), pp. 201-233 | Article | MR 1896103

[6] Curtis T. McMullen Dynamics on blowups of the projective plane, Publ. Math., Inst. Hautes Étud. Sci., Volume 105 (2007), pp. 49-89 | Article | MR 2354205

[7] Curtis T. McMullen K3 surfaces, entropy and glue, J. Reine Angew. Math., Volume 658 (2011), pp. 1-25 | Article | MR 2831510

[8] Curtis T. McMullen cox.tar, Salem number/Coxeter group/K3 surface package, Harvard Dataverse, 2015 | Article

[9] Curtis T. McMullen Automorphisms of projective K3 surfaces with minimum entropy, Invent. Math., Volume 203 (2016) no. 1, pp. 179-215 | Article | MR 3437870

[10] Keiji Oguiso The third smallest Salem number in automorphisms of K3 surfaces, Algebraic geometry in East Asia—Seoul 2008 (Advanced Studies in Pure Mathematics) Volume 60, Mathematical Society of Japan, 2010 | Article | MR 2761934

[11] Paul Reschke Salem numbers and automorphisms of complex surfaces, Math. Res. Lett., Volume 19 (2012) no. 2, pp. 475-482 | Article | MR 2955777

[12] Paul Reschke Salem numbers and automorphisms of abelian surfaces, Osaka J. Math., Volume 54 (2017) no. 1, pp. 1-15

[13] Wolfgang M. Ruppert When is an abelian surface isomorphic or isogeneous to a product of elliptic curves ?, Math. Z., Volume 203 (1990) no. 2, pp. 293-299 | Article | MR 1033438

[14] Robert Silhol Real abelian varieties and the theory of Comessatti, Math. Z., Volume 181 (1982) no. 3, pp. 345-364 | Article | MR 678890

[15] Robert Silhol Real algebraic surfaces, Lecture Notes in Mathematics, Volume 1392, Springer, 1989 | MR 1015720

[16] Takato Uehara Rational surface automorphisms with positive entropy, Ann. Inst. Fourier, Volume 66 (2016) no. 1, pp. 377-432 http://aif.cedram.org/item?id=aif_2016__66_1_377_0 | MR 3477879

[17] Yosef Yomdin Volume growth and entropy, Isr. J. Math., Volume 57 (1987) no. 3, pp. 285-300 | Article | MR 889979

Cité par Sources :