We show that viscosity solutions of evolutionary weakly coupled systems of Hamilton–Jacobi equations can be approximated by iterated twisted Lax–Oleinik like operators. We establish convergence to the solution of the iterated scheme and discuss further properties of the approximate solutions.
Nous démontrons que les solutions de viscosité d’un système faiblement couplé d’équations d’Hamilton–Jacobi peuvent être approchées par des itérations d’opérateurs tordus à la Lax–Oleinik. On établit la convergence vers la solution du schéma itératif et mettons en exergue quelques propriétés supplémentaires des solutions approchées.
Accepted:
Published online:
DOI: 10.5802/afst.1598
Keywords: weakly coupled systems of Hamilton–Jacobi equations, viscosity solutions, weak KAM Theory
Maxime Zavidovique 1
@article{AFST_2019_6_28_2_209_0, author = {Maxime Zavidovique}, title = {Twisted {Lax{\textendash}Oleinik} formulas and weakly coupled systems of {Hamilton{\textendash}Jacobi} equations}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {209--224}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 28}, number = {2}, year = {2019}, doi = {10.5802/afst.1598}, mrnumber = {3957680}, zbl = {07095681}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1598/} }
TY - JOUR AU - Maxime Zavidovique TI - Twisted Lax–Oleinik formulas and weakly coupled systems of Hamilton–Jacobi equations JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2019 SP - 209 EP - 224 VL - 28 IS - 2 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1598/ DO - 10.5802/afst.1598 LA - en ID - AFST_2019_6_28_2_209_0 ER -
%0 Journal Article %A Maxime Zavidovique %T Twisted Lax–Oleinik formulas and weakly coupled systems of Hamilton–Jacobi equations %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2019 %P 209-224 %V 28 %N 2 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1598/ %R 10.5802/afst.1598 %G en %F AFST_2019_6_28_2_209_0
Maxime Zavidovique. Twisted Lax–Oleinik formulas and weakly coupled systems of Hamilton–Jacobi equations. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 28 (2019) no. 2, pp. 209-224. doi : 10.5802/afst.1598. https://afst.centre-mersenne.org/articles/10.5802/afst.1598/
[1] Solutions de viscosité des équations de Hamilton–Jacobi, Mathématiques & Applications (Berlin), 17, Springer, 1994, x+194 pages | MR | Zbl
[2] A new PDE approach to the large time asymptotics of solutions of Hamilton–Jacobi equations, Bull. Math. Sci., Volume 3 (2013) no. 3, pp. 363-388 | DOI | MR | Zbl
[3] Convergence of approximation schemes for fully nonlinear second order equations, Asymptotic Anal., Volume 4 (1991) no. 3, pp. 271-283 | MR | Zbl
[4] On the large time behavior of solutions of Hamilton-Jacobi equations, SIAM J. Math. Anal., Volume 31 (2000) no. 4, pp. 925-939 | DOI | MR | Zbl
[5] A new method for large time behavior of degenerate viscous Hamilton–Jacobi equations with convex Hamiltonians, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 32 (2015) no. 1, pp. 183-200 | DOI | MR | Zbl
[6] Homogenization of monotone systems of Hamilton–Jacobi equations, ESAIM, Control Optim. Calc. Var., Volume 16 (2010) no. 1, pp. 58-76 | DOI | MR | Zbl
[7] Semiconcave functions, Hamilton–Jacobi equations, and optimal control, Progress in Nonlinear Differential Equations and their Applications, 58, Birkhäuser, 2004, xiv+304 pages | MR | Zbl
[8] Generalized one-sided estimates for solutions of Hamilton–Jacobi equations and applications, Nonlinear Anal., Theory Methods Appl., Volume 13 (1989) no. 3, pp. 305-323 | DOI | MR | Zbl
[9] Functional analysis, calculus of variations and optimal control, Graduate Texts in Mathematics, 264, Springer, 2013, xiv+591 pages | DOI | MR | Zbl
[10] Regularity properties of solutions to the basic problem in the calculus of variations, Trans. Am. Math. Soc., Volume 289 (1985) no. 1, pp. 73-98 | DOI | MR | Zbl
[11] Convergence of the solutions of the discounted Hamilton–Jacobi equation: convergence of the discounted solutions, Invent. Math., Volume 206 (2016) no. 1, pp. 29-55 | DOI | MR | Zbl
[12] A generalized dynamical approach to the large time behavior of solutions of Hamilton–Jacobi equations, SIAM J. Math. Anal., Volume 38 (2006) no. 2, pp. 478-502 | DOI | MR | Zbl
[13] Random Lax–Oleinik semigroups for Hamilton–Jacobi systems, J. Math. Pures Appl., Volume 120 (2018), pp. 294-333 | DOI | MR | Zbl
[14] Aubry sets for weakly coupled systems of Hamilton–Jacobi equations, SIAM J. Math. Anal., Volume 46 (2014) no. 5, pp. 3361-3389 | DOI | MR | Zbl
[15] Viscosity solutions for weakly coupled systems of Hamilton–Jacobi equations, Proc. Lond. Math. Soc., Volume 63 (1991) no. 1, pp. 212-240 | DOI | MR | Zbl
[16] Sur la convergence du semi-groupe de Lax–Oleinik, C. R. Math. Acad. Sci. Paris, Volume 327 (1998) no. 3, pp. 267-270 | DOI | MR | Zbl
[17] Cycle characterization of the Aubry set for weakly coupled Hamilton–Jacobi systems, Commun. Contemp. Math., Volume 20 (2018) no. 6, 1750095, 28 pages (Art. ID 1750095, 28O pages) | DOI | MR | Zbl
[18] The vanishing discount problem and viscosity Mather measures. Part 1: The problem on a torus, J. Math. Pures Appl., Volume 108 (2017) no. 2, pp. 125-149 | DOI | MR | Zbl
[19] Limit of the infinite horizon discounted Hamilton–Jacobi equation, Discrete Contin. Dyn. Syst., Volume 15 (2011) no. 3, pp. 623-635 | DOI | MR | Zbl
[20] A Lagrangian approach to weakly coupled Hamilton–Jacobi systems, SIAM J. Math. Anal., Volume 48 (2016) no. 2, pp. 821-846 | DOI | MR | Zbl
[21]
, 2013 (personal communication)[22] Viscosity solution of the Hamilton–Jacobi equation by a limiting minimax method, Nonlinearity, Volume 27 (2014) no. 1, pp. 17-41 | DOI | MR | Zbl
Cited by Sources: