The present paper is a complement to the -theory for the -operator on a Hermitian complex space of pure dimension with isolated singularities, presented in [17] and [13]. The general philosophy is to use a resolution of singularities to obtain a “regular” model of the -cohomology.
First, we show how the representation of the -cohomology of on the level of -forms in terms of “regular” -cohomology on , given in [17], can be made explicit in terms of differential forms, if a certain reasonable extra condition is satisfied. Second, we prove the analogous statement for -cohomology, which is a new result. Finally, we use this in combination with duality observations to give a new proof of the main results from [13], where the resolution is used to express the -cohomology of on the level of -forms in terms of “regular” -cohomology on .
Le présent article est un complément à la théorie de pour l’opérateur sur un espace complexe hermitien de dimension pure avec des singularités isolées, présenté dans [17] et [13]. La philosophie générale est d’utiliser une résolution de singularités pour obtenir un modèle « régulier » de la -cohomologie.
Tout d’abord, nous montrons comment la représentation de la -cohomologie de au niveau de -formes en termes de la -cohomologie « réguliere » sur , donnée dans [17], peut être fait explicite en termes de formes différentielles, si une certaine condition supplémentaire raisonnable est remplie. Deuxièmement, nous prouvons la déclaration analogue pour la -cohomologie, ce qui est un nouveau résultat. Enfin, nous l’utilisons en combinaison avec des observations de dualité pour donner une nouvelle preuve des principaux résultats de [13], où la résolution est utilisée pour exprimer la -cohomologie de sur le niveau de -formes en termes de -cohomologie « régulière » sur .
Accepted:
Published online:
DOI: 10.5802/afst.1599
Keywords: Cauchy–Riemann equations, $L^2$-theory, singular complex spaces
Jean Ruppenthal 1
@article{AFST_2019_6_28_2_225_0, author = {Jean Ruppenthal}, title = {$L^2$-theory for the $\protect \overline{\partial }$-operator on complex spaces with isolated singularities}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {225--258}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 28}, number = {2}, year = {2019}, doi = {10.5802/afst.1599}, mrnumber = {3957681}, zbl = {07095682}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1599/} }
TY - JOUR AU - Jean Ruppenthal TI - $L^2$-theory for the $\protect \overline{\partial }$-operator on complex spaces with isolated singularities JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2019 SP - 225 EP - 258 VL - 28 IS - 2 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1599/ DO - 10.5802/afst.1599 LA - en ID - AFST_2019_6_28_2_225_0 ER -
%0 Journal Article %A Jean Ruppenthal %T $L^2$-theory for the $\protect \overline{\partial }$-operator on complex spaces with isolated singularities %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2019 %P 225-258 %V 28 %N 2 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1599/ %R 10.5802/afst.1599 %G en %F AFST_2019_6_28_2_225_0
Jean Ruppenthal. $L^2$-theory for the $\protect \overline{\partial }$-operator on complex spaces with isolated singularities. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 28 (2019) no. 2, pp. 225-258. doi : 10.5802/afst.1599. https://afst.centre-mersenne.org/articles/10.5802/afst.1599/
[1] Desingularization theorems, Memorias de Matemática del Instituto “Jorge Juan”, 30, Consejo Superior de Investigaciones Científicas, 1977 | MR | Zbl
[2] Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant, Invent. Math., Volume 128 (1997) no. 2, pp. 207-302 | MR | Zbl
[3] Local results for : the isolated singularities case, Int. J. Math., Volume 16 (2005) no. 4, pp. 387-418 | DOI | MR | Zbl
[4] Ein Theorem der analytischen Garbentheorie und die Modulräume komplexer Strukturen, Publ. Math., Inst. Hautes Étud. Sci., Volume 5 (1960), pp. 233-292 | Zbl
[5] Über Modifikationen und exzeptionelle analytische Mengen, Math. Ann., Volume 146 (1962), pp. 331-368 | DOI | Zbl
[6] The Hironaka theorem on resolution of singularities, Bull. Am. Math. Soc., Volume 40 (2003) no. 3, pp. 323-403 | Zbl
[7] Theory of functions on complex manifolds, Monographs in Mathematics, 79, Birkhäuser, 1984, 226 pages | MR | Zbl
[8] Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II, Ann. Math., Volume 79 (1964), pp. 109-203 | DOI | MR | Zbl
[9] Local cohomology along exceptional sets, Math. Ann., Volume 275 (1986) no. 4, pp. 673-682 | DOI | MR | Zbl
[10] On rational singularities, Am. J. Math., Volume 94 (1972), pp. 597-608 | DOI | MR | Zbl
[11] The Cauchy–Riemann complex. Integral formulae and Neumann problem, Aspects of Mathematics, E34, Vieweg, 2002 | Zbl
[12] -properties of the and the -Neumann operator on spaces with isolated singularities, Math. Ann., Volume 359 (2014) no. 3-4, pp. 803-838 | DOI | MR | Zbl
[13] --cohomology groups of some singular complex spaces, Invent. Math., Volume 192 (2013) no. 2, pp. 413-458 | MR | Zbl
[14] -cohomology of complex projective varieties, J. Am. Math. Soc., Volume 4 (1991) no. 3, pp. 603-621 | MR | Zbl
[15] Functional analysis, International Series in Pure and Applied Mathematics, McGraw-Hill, 1991 | Zbl
[16] About the -equation at isolated singularities with regular exceptional set, Int. J. Math., Volume 20 (2009) no. 4, pp. 459-489 | DOI | MR | Zbl
[17] -theory for the -operator on compact complex spaces, Duke Math. J., Volume 163 (2014) no. 15, pp. 2887-2934 | DOI | MR | Zbl
[18] Relative vanishing theorems in analytic spaces, Duke Math. J., Volume 52 (1985) no. 1, pp. 273-279 | DOI | MR | Zbl
Cited by Sources: