On Extension Properties of Pluricomplex Green Functions
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 28 (2019) no. 2, pp. 329-356.

Let Ω 0 be a bounded domain in n and be a compact subset of Ω 0 such that Ω:=Ω 0 is connected. This paper deals with the study of the extension properties of the pluricomplex Green function of Ω to strictly larger subdomains Ω ˜ of Ω as a pluricomplex Green function. The problem will be studied when Ω 0 is a pseudoconvex, bounded complete Reinhardt domain in n and a detailed study in unit bidisc Δ 2 2 will be provided.

À condition que Ω 0 est une domaine bornée dans n et soit compact sous-ensemble de Ω 0 en maintenant que Ω:=Ω 0 soit connexe, cet article va examiner les propriétés d’extension de la fonction de Green pluricomplexe de Ω en sous-domaines strictement plus larges Ω ˜ de Ω comme une fonction de Green pluricomplexe. Le problème sera examiné quand Ω 0 soit une domaine Reinhardt complète bornée pseduconvexe dans n et une étude détaillée sur unité disque Δ 2 2 sera fournie.

Received:
Accepted:
Published online:
DOI: 10.5802/afst.1601
Classification: 32U35
Keywords: pluricomplex Green functions, convex functions, Reinhardt domains

S. Zeynep Özal Kurşungöz 1

1 Sabanci University, 34956, Tuzla, Istanbul, Turkey
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AFST_2019_6_28_2_329_0,
     author = {S. Zeynep \"Ozal Kur\c{s}ung\"oz},
     title = {On {Extension} {Properties} of {Pluricomplex} {Green} {Functions}},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {329--356},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 28},
     number = {2},
     year = {2019},
     doi = {10.5802/afst.1601},
     mrnumber = {3957683},
     zbl = {07095684},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1601/}
}
TY  - JOUR
AU  - S. Zeynep Özal Kurşungöz
TI  - On Extension Properties of Pluricomplex Green Functions
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2019
SP  - 329
EP  - 356
VL  - 28
IS  - 2
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1601/
DO  - 10.5802/afst.1601
LA  - en
ID  - AFST_2019_6_28_2_329_0
ER  - 
%0 Journal Article
%A S. Zeynep Özal Kurşungöz
%T On Extension Properties of Pluricomplex Green Functions
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2019
%P 329-356
%V 28
%N 2
%I Université Paul Sabatier, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1601/
%R 10.5802/afst.1601
%G en
%F AFST_2019_6_28_2_329_0
S. Zeynep Özal Kurşungöz. On Extension Properties of Pluricomplex Green Functions. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 28 (2019) no. 2, pp. 329-356. doi : 10.5802/afst.1601. https://afst.centre-mersenne.org/articles/10.5802/afst.1601/

[1] Eric Bedford; Dan Burns Domains of existence for plurisubharmonic functions, Math. Ann., Volume 238 (1978) no. 1, pp. 67-69 | DOI | MR | Zbl

[2] Urban Cegrell On the domains of existence for plurisubharmonic functions, Complex analysis (Warsaw, 1979) (Banach Center Publications), Volume 11, PWN - Polish Scientific Publishers, 1983, pp. 33-37 | MR | Zbl

[3] Urban Cegrell Plurisubharmonic functions outside compact sets, Proc. Am. Math. Soc., Volume 103 (1988) no. 1, pp. 81-84 | DOI | MR | Zbl

[4] Reese Harvey; John Polking Extending analytic objects, Commun. Pure Appl. Math., Volume 28 (1975) no. 6, pp. 701-727 | DOI | MR | Zbl

[5] Marek Jarnicki; Peter Pflug First steps in several complex variables: Reinhardt domains, EMS Textbooks in Mathematics, European Mathematical Society (EMS), Zürich, 2008 | DOI | Zbl

[6] Maciej Klimek Extremal plurisubharmonic functions and invariant pseudodistances, Bull. Soc. Math. Fr., Volume 113 (1985) no. 2, pp. 231-240 | DOI | MR | Zbl

[7] Maciej Klimek Invariant pluricomplex Green functions, Topics in complex analysis (Warsaw, 1992) (Banach Center Publications), Volume 31, PWN - Polish Scientific Publishers, 1995, pp. 207-226 | MR | Zbl

[8] S. Sadullaev Extension of plurisubharmonic functions from a submanifold (Russian), Dokl. Akad. Nauk UzSSR (1982), pp. 3-4 | MR | Zbl

[9] Min Yan Extension of convex function, J. Convex Anal., Volume 21 (2014) no. 4, pp. 965-987 | MR | Zbl

[10] V. P. Zakharyuta Spaces of analytic functions and maximal plurisubharmonic functions (Russian), D. Sc. Dissertation, Rostov-on-Don, 1984

Cited by Sources: