Approches courantielles à la Mellin dans un cadre non archimédien
[Mellin’s Currential approaches in a non archimedean framework]
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 28 (2019) no. 2, pp. 357-396.

We propose an approach of Mellin type for the approximation of integration currents or the effective realization of normalized Green currents associated with a cycle 1 m [div(s j )], where s j is a meromorphic section of a line bundle j U over an open U in a good Berkovich space when each j has a smooth metric and codim U ( jJ Supp[div(s j )])#J for every set J{1,,p}. We also study the transposition to the non archimedean context of Crofton and King formulas, particularly the approximate realization of Vogel and Segre currents.

On propose une approche du type Mellin pour l’approximation des courants d’intégration ou la réalisation effective de courants de Green normalisés associés à un cycle 1 m [div(s j )], où s j est une section méromorphe d’un fibré en droites j U au-dessus d’un ouvert U d’un bon espace de Berkovich, lorsque chaque j est équipé d’une métrique lisse et que codim U ( jJ Supp[div(s j )])#J pour tout ensemble J{1,,p}. On étudie aussi la transposition au cadre non archimédien des formules de Crofton et de King, en particulier la réalisation approchée de courants de Vogel et de Segre.

Received:
Accepted:
Published online:
DOI: 10.5802/afst.1602
Classification: 32U25, 32U35, 32U40, 14G22, 14G40, 14TXX
Mot clés : courants, diviseurs, équations de Lelong–Poincaré, formule de King, nombres de Lelong
Keywords: currents, divisors, Lelong–Poincaré equations, King formula, Lelong numbers

Ibrahima Hamidine 1

1 Département de Mathématiques, UFR Sciences et Technologies, Université Assane Seck de Ziguinchor, BP : 523, Sénégal
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AFST_2019_6_28_2_357_0,
     author = {Ibrahima Hamidine},
     title = {Approches courantielles \`a la {Mellin} dans un cadre non archim\'edien},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {357--396},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {6e s{\'e}rie, 28},
     number = {2},
     year = {2019},
     doi = {10.5802/afst.1602},
     mrnumber = {3957684},
     zbl = {07095685},
     language = {fr},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1602/}
}
TY  - JOUR
AU  - Ibrahima Hamidine
TI  - Approches courantielles à la Mellin dans un cadre non archimédien
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2019
SP  - 357
EP  - 396
VL  - 28
IS  - 2
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1602/
DO  - 10.5802/afst.1602
LA  - fr
ID  - AFST_2019_6_28_2_357_0
ER  - 
%0 Journal Article
%A Ibrahima Hamidine
%T Approches courantielles à la Mellin dans un cadre non archimédien
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2019
%P 357-396
%V 28
%N 2
%I Université Paul Sabatier, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1602/
%R 10.5802/afst.1602
%G fr
%F AFST_2019_6_28_2_357_0
Ibrahima Hamidine. Approches courantielles à la Mellin dans un cadre non archimédien. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 28 (2019) no. 2, pp. 357-396. doi : 10.5802/afst.1602. https://afst.centre-mersenne.org/articles/10.5802/afst.1602/

[1] Mats Andersson; Håkan Samuelsson Kalm; Elizabeth Wulcan; Alain Yger Segre numbers, a generalized King formula, and local intersections, J. Reine Angew. Math., Volume 728 (2017), pp. 105-136 | MR | Zbl

[2] Farhad Babaee Complex Tropical Currents : Extremality, and Approximation (https://arxiv.org/abs/1403.7456) | Zbl

[3] Farhad Babaee; June Huh A tropical approach to a generalized Hodge conjecture for positive currents, Duke Math. J., Volume 166 (2017) no. 14, pp. 2749-2813 | DOI | MR | Zbl

[4] Carlos A. Berenstein; Roger Gay; Alekos Vidras; Alain Yger Residue currents and Bezout identities, Progress in Mathematics, 114, Birkhäuser, 1993 | MR | Zbl

[5] Carlos A. Berenstein; Alain Yger Green currents and analytic continuation, J. Anal. Math., Volume 75 (1998), pp. 1-50 | DOI | MR | Zbl

[6] Vladimir G. Berkovich Spectral theory and analytic geometry over non-Archimedean fields, Mathematical Surveys and Monographs, 33, American Mathematical Society, 1990 | MR | Zbl

[7] Sébastien Boucksom; Charles Favre; Mattias Jonsson Singular semipositive metrics in non-Archimedean geometry, J. Algebr. Geom., Volume 25 (2016) no. 1, pp. 77-139 | MR | Zbl

[8] José Ignacio Burgos Gil; Patrice Philippon; Martín Sombra Arithmetic geometry of toric varieties. Metrics, measures and heights, Astérisque, 360, Société Mathématique de France, 2014 | Zbl

[9] Antoine Chambert-Loir Mesures et équidistribution sur les espaces de Berkovich, J. Reine Angew. Math., Volume 595 (2006), pp. 215-235 | Zbl

[10] Antoine Chambert-Loir Heights and measures on analytic spaces. A survey of recent results, and some remarks, Motivic integration and its interactions with model theory and non-Archimedean geometry. Volume II (London Mathematical Society Lecture Note Series), Volume 384, Cambridge University Press, 2011, pp. 1-50 | MR | Zbl

[11] Antoine Chambert-Loir Differential forms and currents on Berkovich spaces, 2013 (lecture at the Simons Symposium on Nonarchimedean and tropical geometry, held in St John) | Zbl

[12] Antoine Chambert-Loir; Antoine Ducros Formes différentielles réelles et courants sur les espaces de Berkovich (https://arxiv.org/abs/1204.6277v1) | Zbl

[13] Brian Conrad Irreducible components of rigid spaces, Ann. Inst. Fourier, Volume 49 (1999) no. 2, pp. 473-541 | DOI | MR | Zbl

[14] Antoine Ducros Variation de la dimension relative en géométrie analytique p-adique, Compos. Math., Volume 143 (2007) no. 6, pp. 1511-1532 | DOI | MR | Zbl

[15] Terence Gaffney; Robert Gassler Segre numbers and hypersurface singularities, J. Algebr. Geom., Volume 8 (1999) no. 4, pp. 695-736 | MR | Zbl

[16] Walter Gubler Equidistribution over function fields, Manuscr. Math., Volume 127 (2008) no. 4, pp. 485-510 | DOI | MR | Zbl

[17] Walter Gubler Forms and current on the analytification of an algebraic variety (after Chambert-Loir and Ducros), Nonarchimedean and tropical geometry (Simons Symposia), Springer, 2016, pp. 1-30 | MR | Zbl

[18] Walter Gubler; Klaus Künnemann A tropical approach to nonarchimedean Arakelov geometry, Algebra Number Theory, Volume 11 (2017) no. 1, pp. 77-180 | MR | Zbl

[19] Jun-ichi Igusa An introduction to the theory of local zeta functions, AMS/IP Studies in Advanced Mathematics, 14, American Mathematical Society ; International Press, 2000 | MR | Zbl

[20] Xinyi Yuan Algebraic dynamics, canonical heights and Arakelov geometry, Fifth International Congress of Chinese Mathematicians. Part 2 (AMS/IP Studies in Advanced Mathematics), Volume 51-2, American Mathematical Society, 2012, pp. 893-929 | MR | Zbl

Cited by Sources: