In earlier work, Helen Wong and the author discovered certain “miraculous cancellations” for the quantum trace map connecting the Kauffman bracket skein algebra of a surface to its quantum Teichmüller space, occurring when the quantum parameter is a root of unity. The current paper is devoted to giving a more representation theoretic interpretation of this phenomenon, in terms of the quantum group and its dual Hopf algebra .
Des travaux précédents de Helen Wong et de l’auteur ont mis en évidence, quand le paramètre quantique est une racine de l’unité, des « annulations miraculeuses » pour l’application de trace quantique qui relie l’algèbre d’écheveaux du crochet de Kauffman à l’espace de Teichmüller quantique d’une surface. L’article ci-dessous fournit une interprétation plus conceptuelle de ce phénomène, en termes de représentations du groupe quantique et de son algèbre de Hopf duale .
Francis Bonahon 1
CC-BY 4.0
@article{AFST_2019_6_28_3_523_0,
author = {Francis Bonahon},
title = {Miraculous cancellations for quantum $\protect \mathrm{SL}_2$},
journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
pages = {523--557},
publisher = {Universit\'e Paul Sabatier, Toulouse},
volume = {Ser. 6, 28},
number = {3},
year = {2019},
doi = {10.5802/afst.1608},
language = {en},
url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1608/}
}
TY - JOUR
AU - Francis Bonahon
TI - Miraculous cancellations for quantum $\protect \mathrm{SL}_2$
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 2019
SP - 523
EP - 557
VL - 28
IS - 3
PB - Université Paul Sabatier, Toulouse
UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1608/
DO - 10.5802/afst.1608
LA - en
ID - AFST_2019_6_28_3_523_0
ER -
%0 Journal Article
%A Francis Bonahon
%T Miraculous cancellations for quantum $\protect \mathrm{SL}_2$
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2019
%P 523-557
%V 28
%N 3
%I Université Paul Sabatier, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1608/
%R 10.5802/afst.1608
%G en
%F AFST_2019_6_28_3_523_0
Francis Bonahon. Miraculous cancellations for quantum $\protect \mathrm{SL}_2$. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Volume spécial en l’honneur de Jean-Pierre OTAL “Low dimensional topology, hyperbolic manifolds and spectral geometry”, Tome 28 (2019) no. 3, pp. 523-557. doi: 10.5802/afst.1608
[1] Scindements de Heegaard des espaces lenticulaires, C. R. Math. Acad. Sci. Paris, Volume 294 (1982) no. 17, pp. 585-587 | Zbl | MR
[2] Scindements de Heegaard des espaces lenticulaires, Ann. Sci. Éc. Norm. Supér., Volume 16 (1983) no. 3, pp. 451-466 | Zbl | DOI | MR
[3] Variétés hyperboliques à géodésiques arbitrairement courtes, Bull. Lond. Math. Soc., Volume 20 (1988) no. 3, pp. 255-261 | Zbl | DOI | MR
[4] Laminations mesurées de plissage des variétés hyperboliques de dimension , Ann. Math., Volume 160 (2004) no. 3, pp. 1013-1055 | Zbl | MR | DOI
[5] Quantum traces for representations of surface groups in , Geom. Topol., Volume 15 (2011) no. 3, pp. 1569-1615 | Zbl | MR | DOI
[6] Representations of the Kauffman bracket skein algebra I: invariants and miraculous cancellations, Invent. Math., Volume 204 (2016) no. 1, pp. 195-243 | Zbl | DOI | MR
[7] Hopf algebras and the quantum Yang-Baxter equation, Dokl. Akad. Nauk SSSR, Volume 283 (1985) no. 5, pp. 1060-1064 | MR
[8] Quantum groups, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, 1986) (1987), pp. 798-820 | MR
[9] The quantum MacMahon master theorem, Proc. Natl. Acad. Sci. USA, Volume 103 (2006) no. 38, pp. 13928-13931 | Zbl | MR | DOI
[10] A -difference analogue of and the Yang-Baxter equation, Lett. Math. Phys., Volume 10 (1985) no. 1, pp. 63-69 | Zbl | DOI | MR
[11] Quantum groups, Graduate Texts in Mathematics, 155, Springer, 1995, xii+531 pages | Zbl | MR | DOI
[12] Representations of the algebra -orthogonal polynomials and invariants of links, Infinite-dimensional Lie algebras and groups (Luminy-Marseille, 1988) (Advanced Series in Mathematical Physics), Volume 7, World Scientific, 1989, pp. 285-339 | MR
[13] The Clebsch–Gordan coefficients for the quantum group and -Hahn polynomials, Indag. Math., Volume 51 (1989) no. 4, pp. 443-456 | Zbl | DOI | MR
[14] Some remarks on Koszul algebras and quantum groups, Ann. Inst. Fourier, Volume 37 (1987) no. 4, pp. 191-205 | Zbl | DOI | MR
[15] Quantum groups and noncommutative geometry, Université de Montréal, 1988, vi+91 pages | Zbl | MR
[16] Quantization of Lie groups and Lie algebras, Algebra Anal., Volume 1 (1989) no. 1, pp. 178-206 | MR
[17] Ribbon graphs and their invariants derived from quantum groups, Commun. Math. Phys., Volume 127 (1990) no. 1, pp. 1-26 | Zbl | DOI | MR
[18] Invariants of -manifolds via link polynomials and quantum groups, Invent. Math., Volume 103 (1991) no. 3, pp. 547-597 | Zbl | DOI | MR
[19] Hopf algebra techniques applied to the quantum group , Deformation theory and quantum groups with applications to mathematical physics (Amherst, MA, 1990) (Contemporary Mathematics), Volume 134, American Mathematical Society, 1992, pp. 309-323 | Zbl | DOI | MR
[20] Some topics on , J. Algebra, Volume 147 (1992) no. 2, pp. 379-410 | Zbl | DOI | MR
[21] -analogues of Clebsch-Gordan coefficients, and the algebra of functions on the quantum group , Dokl. Akad. Nauk SSSR, Volume 306 (1989) no. 2, pp. 269-271 | Zbl | MR
[22] Quantum field theory and the Jones polynomial, Commun. Math. Phys., Volume 121 (1989) no. 3, pp. 351-399 | Zbl | DOI | MR
Cité par Sources :