A classification of degree 2 semi-stable rational maps 2 2 with large finite dynamical automorphism group
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 28 (2019) no. 4, pp. 733-811.

Let K be an algebraically closed field of characteristic 0. In this paper we classify the PGL 3 (K)-conjugacy classes of semi-stable dominant degree 2 rational maps f: K 2 K 2 whose automorphism group

Aut(f):={φPGL3(K):φ-1fφ=f}

is finite and of order at least 3. In particular, we prove that #Aut(f)24 in general, that #Aut(f)21 for morphisms, and that #Aut(f)6 for all but finitely many conjugacy classes of f.

Soit K un corps algébriquement clos de charactéristique 0. Dans cet article nous classifions les PGL 3 (K)-classes de conjugaison de fonctions rationelles f: K 2 K 2 de degré 2 dominantes et semi-stables dont le groupe d’automorphismes

Aut(f):={φPGL3(K):φ-1fφ=f}

est fini et d’ordre au moins 3. En particulier, nous démontrons que #Aut(f)24 en général, que #Aut(f)21 pour les morphismes et que #Aut(f)6 pour toutes excepté un nombre fini de classes de conjugaisons de f.

Received:
Accepted:
Published online:
DOI: 10.5802/afst.1614
Classification: 37P45, 37P05
Keywords: dynamical moduli space

Michelle Manes 1; Joseph H. Silverman 2

1 Department of Mathematics, University of Hawaii, Honolulu, HI 96822, USA
2 Mathematics Department, Box 1917 Brown University, Providence, RI 02912, USA
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AFST_2019_6_28_4_733_0,
     author = {Michelle Manes and Joseph H. Silverman},
     title = {A classification of degree~$2$ semi-stable rational maps $\protect \mathbb{P}^2\rightarrow \protect \mathbb{P}^2$ with large finite dynamical automorphism group},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {733--811},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 28},
     number = {4},
     year = {2019},
     doi = {10.5802/afst.1614},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1614/}
}
TY  - JOUR
AU  - Michelle Manes
AU  - Joseph H. Silverman
TI  - A classification of degree $2$ semi-stable rational maps $\protect \mathbb{P}^2\rightarrow \protect \mathbb{P}^2$ with large finite dynamical automorphism group
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2019
SP  - 733
EP  - 811
VL  - 28
IS  - 4
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1614/
DO  - 10.5802/afst.1614
LA  - en
ID  - AFST_2019_6_28_4_733_0
ER  - 
%0 Journal Article
%A Michelle Manes
%A Joseph H. Silverman
%T A classification of degree $2$ semi-stable rational maps $\protect \mathbb{P}^2\rightarrow \protect \mathbb{P}^2$ with large finite dynamical automorphism group
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2019
%P 733-811
%V 28
%N 4
%I Université Paul Sabatier, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1614/
%R 10.5802/afst.1614
%G en
%F AFST_2019_6_28_4_733_0
Michelle Manes; Joseph H. Silverman. A classification of degree $2$ semi-stable rational maps $\protect \mathbb{P}^2\rightarrow \protect \mathbb{P}^2$ with large finite dynamical automorphism group. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 28 (2019) no. 4, pp. 733-811. doi : 10.5802/afst.1614. https://afst.centre-mersenne.org/articles/10.5802/afst.1614/

[1] Dominique Cerveau; Julie Déserti Transformations birationnelles de petit degré, Cours Spécialisés, 19, Société Mathématique de France, 2013 | Zbl

[2] Igor V. Dolgachev; Vasily A. Iskovskikh Finite subgroups of the plane Cremona group, Algebra, arithmetic, and geometry: in honor of Yu. I. Manin. Vol. I (Progress in Mathematics), Volume 269, Birkhäuser, 2009, pp. 443-548 | DOI | MR | Zbl

[3] João Alberto de Faria; Benjamin Hutz Automorphism groups and invariant theory on N , J. Algebra Appl., Volume 17 (2018) no. 9, 1850162, 38 pages | DOI | MR | Zbl

[4] John Erik Fornaess; Nessim Sibony Complex dynamics in higher dimension. II, Modern methods in complex analysis (Princeton, NJ, 1992) (Annals of Mathematics Studies), Volume 137, Princeton University Press, 1995, pp. 135-182 | MR | Zbl

[5] John Erik Fornaess; He Wu Classification of degree 2 polynomial automorphisms of 3 , Publ. Mat., Barc., Volume 42 (1998) no. 1, pp. 195-210 | DOI | MR | Zbl

[6] Vincent Guedj Dynamics of quadratic polynomial mappings of 2 , Mich. Math. J., Volume 52 (2004) no. 3, pp. 627-648 | DOI | MR | Zbl

[7] Boris Hasselblatt; James Propp Degree-growth of monomial maps, Ergodic Theory Dyn. Syst., Volume 27 (2007) no. 5, pp. 1375-1397 | DOI | MR | Zbl

[8] I. N. Herstein Abstract algebra, Prentice Hall, 1996 (With a preface by Barbara Cortzen and David J. Winter) | MR | Zbl

[9] Friedrich Knop Geometric invariant theory and normalizers of stabilizers MathOverflow http://mathoverflow.net/q/243725 (version: 2016-07-05) | Zbl

[10] Alon Levy The space of morphisms on projective space, Acta Arith., Volume 146 (2011) no. 1, pp. 13-31 | DOI | MR | Zbl

[11] Alon Levy; Michelle Manes; Bianca Thompson Uniform bounds for preperiodic points in families of twists, Proc. Am. Math. Soc., Volume 142 (2014) no. 9, pp. 3075-3088 | DOI | MR | Zbl

[12] D. Luna Adhérences d’orbite et invariants, Invent. Math., Volume 29 (1975) no. 3, pp. 231-238 | DOI | MR | Zbl

[13] Michelle Manes -rational cycles for degree-2 rational maps having an automorphism, Proc. Lond. Math. Soc., Volume 96 (2008) no. 3, pp. 669-696 | DOI | MR | Zbl

[14] Nikita Miasnikov; Brian Stout; Phillip Williams Automorphism loci for the moduli space of rational maps, Acta Arith., Volume 180 (2017) no. 3, pp. 267-296 | DOI | MR | Zbl

[15] John Milnor Geometry and dynamics of quadratic rational maps, Exp. Math., Volume 2 (1993) no. 1, pp. 37-83 (With an appendix by the author and Lei Tan) | DOI | MR | Zbl

[16] D. Mumford; J. Fogarty; F. Kirwan Geometric invariant theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, 34, Springer, 1994 | MR | Zbl

[17] Clayton Petsche; Lucien Szpiro; Michael Tepper Isotriviality is equivalent to potential good reduction for endomorphisms of N over function fields, J. Algebra, Volume 322 (2009) no. 9, pp. 3345-3365 | DOI | MR | Zbl

[18] Jean-Pierre Serre Le groupe de Cremona et ses sous-groupes finis, Séminaire Bourbaki. Volume 2008/2009. Exposés 997–1011 (Astérisque), Volume 332, Société Mathématique de France, 2010 | Numdam | Zbl

[19] Joseph H. Silverman The field of definition for dynamical systems on 1 , Compos. Math., Volume 98 (1995) no. 3, pp. 269-304 | Numdam | MR | Zbl

[20] Joseph H. Silverman The space of rational maps on 1 , Duke Math. J., Volume 94 (1998) no. 1, pp. 41-77 | DOI | Zbl

[21] Joseph H. Silverman The arithmetic of dynamical systems, Graduate Texts in Mathematics, 241, Springer, 2007 | MR | Zbl

[22] Joseph H. Silverman The arithmetic of elliptic curves, Graduate Texts in Mathematics, 106, Springer, 2009 | MR | Zbl

[23] Joseph H. Silverman Moduli spaces and arithmetic dynamics, CRM Monograph Series, 30, American Mathematical Society, 2012 | MR | Zbl

[24] Brian Stout A dynamical Shafarevich theorem for twists of rational morphisms, Acta Arith., Volume 166 (2014) no. 1, pp. 69-80 | DOI | MR | Zbl

[25] Lloyd West The moduli space of cubic rational maps (2014) (https://arxiv.org/abs/1408.3247)

Cited by Sources: