Let be an algebraically closed field of characteristic . In this paper we classify the -conjugacy classes of semi-stable dominant degree rational maps whose automorphism group
is finite and of order at least . In particular, we prove that in general, that for morphisms, and that for all but finitely many conjugacy classes of .
Soit un corps algébriquement clos de charactéristique . Dans cet article nous classifions les -classes de conjugaison de fonctions rationelles de degré dominantes et semi-stables dont le groupe d’automorphismes
est fini et d’ordre au moins . En particulier, nous démontrons que en général, que pour les morphismes et que pour toutes excepté un nombre fini de classes de conjugaisons de .
Accepté le :
Publié le :
Keywords: dynamical moduli space
Michelle Manes 1 ; Joseph H. Silverman 2
CC-BY 4.0
@article{AFST_2019_6_28_4_733_0,
author = {Michelle Manes and Joseph H. Silverman},
title = {A classification of degree~$2$ semi-stable rational maps $\protect \mathbb{P}^2\rightarrow \protect \mathbb{P}^2$ with large finite dynamical automorphism group},
journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
pages = {733--811},
year = {2019},
publisher = {Universit\'e Paul Sabatier, Toulouse},
volume = {Ser. 6, 28},
number = {4},
doi = {10.5802/afst.1614},
language = {en},
url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1614/}
}
TY - JOUR
AU - Michelle Manes
AU - Joseph H. Silverman
TI - A classification of degree $2$ semi-stable rational maps $\protect \mathbb{P}^2\rightarrow \protect \mathbb{P}^2$ with large finite dynamical automorphism group
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 2019
SP - 733
EP - 811
VL - 28
IS - 4
PB - Université Paul Sabatier, Toulouse
UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1614/
DO - 10.5802/afst.1614
LA - en
ID - AFST_2019_6_28_4_733_0
ER -
%0 Journal Article
%A Michelle Manes
%A Joseph H. Silverman
%T A classification of degree $2$ semi-stable rational maps $\protect \mathbb{P}^2\rightarrow \protect \mathbb{P}^2$ with large finite dynamical automorphism group
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2019
%P 733-811
%V 28
%N 4
%I Université Paul Sabatier, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1614/
%R 10.5802/afst.1614
%G en
%F AFST_2019_6_28_4_733_0
Michelle Manes; Joseph H. Silverman. A classification of degree $2$ semi-stable rational maps $\protect \mathbb{P}^2\rightarrow \protect \mathbb{P}^2$ with large finite dynamical automorphism group. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 28 (2019) no. 4, pp. 733-811. doi: 10.5802/afst.1614
[1] Transformations birationnelles de petit degré, Cours Spécialisés, 19, Société Mathématique de France, 2013 | Zbl
[2] Finite subgroups of the plane Cremona group, Algebra, arithmetic, and geometry: in honor of Yu. I. Manin. Vol. I (Progress in Mathematics), Volume 269, Birkhäuser, 2009, pp. 443-548 | Zbl | DOI | MR
[3] Automorphism groups and invariant theory on , J. Algebra Appl., Volume 17 (2018) no. 9, 1850162, 38 pages | Zbl | DOI | MR
[4] Complex dynamics in higher dimension. II, Modern methods in complex analysis (Princeton, NJ, 1992) (Annals of Mathematics Studies), Volume 137, Princeton University Press, 1995, pp. 135-182 | Zbl | MR
[5] Classification of degree polynomial automorphisms of , Publ. Mat., Barc., Volume 42 (1998) no. 1, pp. 195-210 | Zbl | DOI | MR
[6] Dynamics of quadratic polynomial mappings of , Mich. Math. J., Volume 52 (2004) no. 3, pp. 627-648 | Zbl | DOI | MR
[7] Degree-growth of monomial maps, Ergodic Theory Dyn. Syst., Volume 27 (2007) no. 5, pp. 1375-1397 | Zbl | DOI | MR
[8] Abstract algebra, Prentice Hall, 1996 (With a preface by Barbara Cortzen and David J. Winter) | Zbl | MR
[9] Geometric invariant theory and normalizers of stabilizers MathOverflow http://mathoverflow.net/q/243725 (version: 2016-07-05)
[10] The space of morphisms on projective space, Acta Arith., Volume 146 (2011) no. 1, pp. 13-31 | Zbl | DOI | MR
[11] Uniform bounds for preperiodic points in families of twists, Proc. Am. Math. Soc., Volume 142 (2014) no. 9, pp. 3075-3088 | Zbl | DOI | MR
[12] Adhérences d’orbite et invariants, Invent. Math., Volume 29 (1975) no. 3, pp. 231-238 | Zbl | DOI | MR
[13] -rational cycles for degree-2 rational maps having an automorphism, Proc. Lond. Math. Soc., Volume 96 (2008) no. 3, pp. 669-696 | Zbl | DOI | MR
[14] Automorphism loci for the moduli space of rational maps, Acta Arith., Volume 180 (2017) no. 3, pp. 267-296 | Zbl | DOI | MR
[15] Geometry and dynamics of quadratic rational maps, Exp. Math., Volume 2 (1993) no. 1, pp. 37-83 (With an appendix by the author and Lei Tan) | Zbl | DOI | MR
[16] Geometric invariant theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, 34, Springer, 1994 | Zbl | MR
[17] Isotriviality is equivalent to potential good reduction for endomorphisms of over function fields, J. Algebra, Volume 322 (2009) no. 9, pp. 3345-3365 | Zbl | DOI | MR
[18] Le groupe de Cremona et ses sous-groupes finis, Séminaire Bourbaki. Volume 2008/2009. Exposés 997–1011 (Astérisque), Volume 332, Société Mathématique de France, 2010 | Zbl | Numdam
[19] The field of definition for dynamical systems on , Compos. Math., Volume 98 (1995) no. 3, pp. 269-304 | Zbl | Numdam | MR
[20] The space of rational maps on , Duke Math. J., Volume 94 (1998) no. 1, pp. 41-77 | Zbl | DOI
[21] The arithmetic of dynamical systems, Graduate Texts in Mathematics, 241, Springer, 2007 | Zbl | MR
[22] The arithmetic of elliptic curves, Graduate Texts in Mathematics, 106, Springer, 2009 | Zbl | MR
[23] Moduli spaces and arithmetic dynamics, CRM Monograph Series, 30, American Mathematical Society, 2012 | Zbl | MR
[24] A dynamical Shafarevich theorem for twists of rational morphisms, Acta Arith., Volume 166 (2014) no. 1, pp. 69-80 | Zbl | DOI | MR
[25] The moduli space of cubic rational maps (2014) (https://arxiv.org/abs/1408.3247)
Cité par Sources :