In this paper, we study several objects in the framework of direct limits of anchored Banach bundles over particular convenient manifolds (direct limits of Banach manifolds). In particular, we give a criterion of integrability for distributions on such convenient manifolds which are locally direct limits of particular sequences of Banach anchor ranges.
Dans cet article, on s’intéresse à l’étude de divers objets rencontrés dans le cadre de limites directes de fibrés de Banach, munis d’une ancre, au dessus de certaines variétés apparaissant comme limites directes de variétés de Banach. En particulier, on donne un critère d’intégrabilité pour des distributions sur de telles variétés qui sont localement des limites directes de suites particulières d’images d’ancres banachiques.
Accepted:
Published online:
DOI: 10.5802/afst.1617
Keywords: Integrable distribution, direct limit, convenient structures, almost Lie Banach algebroid, almost Lie bracket, Koszul connection, anchor range
Patrick Cabau 1; Fernand Pelletier 2
@article{AFST_2019_6_28_5_909_0, author = {Patrick Cabau and Fernand Pelletier}, title = {Integrability on {Direct} {Limits} of {Banach} {Manifolds}}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {909--956}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 28}, number = {5}, year = {2019}, doi = {10.5802/afst.1617}, zbl = {1414.53074}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1617/} }
TY - JOUR AU - Patrick Cabau AU - Fernand Pelletier TI - Integrability on Direct Limits of Banach Manifolds JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2019 SP - 909 EP - 956 VL - 28 IS - 5 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1617/ DO - 10.5802/afst.1617 LA - en ID - AFST_2019_6_28_5_909_0 ER -
%0 Journal Article %A Patrick Cabau %A Fernand Pelletier %T Integrability on Direct Limits of Banach Manifolds %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2019 %P 909-956 %V 28 %N 5 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1617/ %R 10.5802/afst.1617 %G en %F AFST_2019_6_28_5_909_0
Patrick Cabau; Fernand Pelletier. Integrability on Direct Limits of Banach Manifolds. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 28 (2019) no. 5, pp. 909-956. doi : 10.5802/afst.1617. https://afst.centre-mersenne.org/articles/10.5802/afst.1617/
[1] Manifolds, tensor analysis, and applications, Applied Mathematical Sciences, 75, Springer, 1988 | MR | Zbl
[2] Banach Lie algebroids, An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.), Volume 57 (2011) no. 2, pp. 409-416 | MR | Zbl
[3] Differentiability of a function and of its compositions with functions of one variable, Math. Scand., Volume 20 (1967), pp. 249-268 | DOI | MR | Zbl
[4] Éléments de mathématique. Algèbre. Chapitres 1 à 3, Springer, 2006 | Zbl
[5] Integrability of singular distributions on Banach manifolds, Math. Proc. Camb. Philos. Soc., Volume 79 (1976) no. 1, pp. 117-128 | DOI | MR | Zbl
[6] Non holonomic Lagrangian systems on Lie algebroids, Discrete Contin. Dyn. Syst., Volume 24 (2009) no. 2, pp. 213-271 | DOI | Zbl
[7] Weak Levi-Civita connection for the damped metric on the Riemannian path space and vanishing of Ricci tensor in adapted differential geometry, J. Funct. Anal., Volume 185 (2001) no. 2, pp. 681-698 | DOI | MR | Zbl
[8] Direct limit constructions in infinite dimensional Lie theory, Universität Paderborn (Germany) (2011) (Ph. D. Thesis)
[9] Second order tangent bundles of infinite dimensional manifolds, J. Geom. Phys., Volume 52 (2004) no. 2, pp. 127-136 | DOI | MR | Zbl
[10] Linear spaces and differentiation theory, Pure and Applied Mathematics, John Wiley & Sons, 1988 | Zbl
[11] Direct limit Lie groups and manifolds, J. Math. Kyoto Univ., Volume 43 (2003) no. 1, pp. 2-26 | MR | Zbl
[12] Fundamentals of direct limit Lie theory, Compos. Math., Volume 141 (2005) no. 6, pp. 1551-1577 | DOI | MR | Zbl
[13] Direct limits of infinite-dimensional Lie groups compared to direct limits in related categories (2006) (https://arxiv.org/abs/math/0606078) | Zbl
[14] Direct limits of infinite-dimensional Lie groups compared to direct limits in related categories, J. Funct. Anal., Volume 245 (2007) no. 1, pp. 19-61 | DOI | MR | Zbl
[15] Pontryagin maximum principle on almost Lie algebroids, SIAM J. Control Optimization, Volume 49 (2011) no. 3, pp. 1306-1357 | DOI | MR | Zbl
[16] Direct limits of Hausdorff spaces, Academia, Prague, 1972, pp. 165-169 | Zbl
[17] Some theorems on direct limits of expanding sequences of manifolds, Math. Scand., Volume 29 (1971), pp. 5-36 | DOI | MR | Zbl
[18] Separation axioms and direct limits, Can. Math. Bull., Volume 12 (1969), pp. 337-338 | DOI | MR | Zbl
[19] Inductive limits of topologies, their direct products, and problems related to algebraic structures, J. Math. Kyoto Univ., Volume 41 (2001) no. 3, pp. 475-505 | DOI | MR | Zbl
[20] Analogues of the objects of Lie group theory for nonlinear Poisson brackets, Math. USSR, Izv., Volume 28 (1987), pp. 497-527 | DOI | Zbl
[21] The convenient setting of global analysis, Mathematical Surveys and Monographs, 53, American Mathematical Society, 1997 | MR | Zbl
[22] Differential and Riemannian manifolds, Graduate Texts in Mathematics, 160, Springer, 1995 | MR | Zbl
[23] Linear almost Poisson structures and Hamilton–Jacobi equation. Applications to nonholonomic mechanics, J. Geom. Mech., Volume 2 (2010) no. 2, pp. 159-198 | DOI | MR | Zbl
[24] A -exponential statistical Banach manifold, J. Math. Anal. Appl., Volume 398 (2013) no. 2, pp. 466-476 | Zbl
[25] Differential calculus on a Lie algebroid and Poisson manifolds, The J. A. Pereira da Silva birthday schrift (Textos de Matemática. Série B.), Volume 32, Universidade de Coimbra, 2002, pp. 83-149 | MR | Zbl
[26] Integrability of weak distributions on Banach manifolds, Indag. Math., New Ser., Volume 23 (2012) no. 3, pp. 214-242 | DOI | MR | Zbl
[27] Barrelled locally convex spaces, North-Holland Mathematics Studies, 131, North-Holland, 1987 | MR | Zbl
[28] Anchored vector bundles and Lie algebroids, Lie algebroids and related topics in differential geometry (Warsaw, 2000) (Banach Center Publications), Volume 54, Polish Academy of Sciences, 2001, pp. 51-69 | MR | Zbl
[29] Théorie de Lie pour les groupoïdes différentiables. Relations entre propriétés locales et globales, C. R. Math. Acad. Sci. Paris, Volume 263 (1966), pp. 907-910 | MR | Zbl
[30] Integrability of systems of vector fields, J. Lond. Math. Soc., Volume 21 (1980) no. 3, pp. 544-556 | DOI | MR | Zbl
[31] Orbits of families of vector fields and integrability of distributions, Trans. Am. Math. Soc., Volume 180 (1973), pp. 171-188 | DOI | MR | Zbl
[32] Connections on tangent bundles, J. Differ. Geom., Volume 1 (1967), pp. 235-243 | DOI | MR | Zbl
[33] Symplectic groupoids and Poisson manifolds, Bull. Am. Math. Soc., Volume 16 (1987) no. 1, pp. 101-104 | DOI | MR | Zbl
Cited by Sources: