Integrability on Direct Limits of Banach Manifolds
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 28 (2019) no. 5, pp. 909-956.

In this paper, we study several objects in the framework of direct limits of anchored Banach bundles over particular convenient manifolds (direct limits of Banach manifolds). In particular, we give a criterion of integrability for distributions on such convenient manifolds which are locally direct limits of particular sequences of Banach anchor ranges.

Dans cet article, on s’intéresse à l’étude de divers objets rencontrés dans le cadre de limites directes de fibrés de Banach, munis d’une ancre, au dessus de certaines variétés apparaissant comme limites directes de variétés de Banach. En particulier, on donne un critère d’intégrabilité pour des distributions sur de telles variétés qui sont localement des limites directes de suites particulières d’images d’ancres banachiques.

Received:
Accepted:
Published online:
DOI: 10.5802/afst.1617
Classification: 58A30, 18A30, 46T05, 17B66, 37K30, 22E65
Keywords: Integrable distribution, direct limit, convenient structures, almost Lie Banach algebroid, almost Lie bracket, Koszul connection, anchor range

Patrick Cabau 1; Fernand Pelletier 2

1 Lycée Pierre de Fermat, Parvis des Jacobins, 31000 Toulouse, France
2 Lama, Université de Savoie Mont Blanc, 73376 Le Bourget du Lac Cedex, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AFST_2019_6_28_5_909_0,
     author = {Patrick Cabau and Fernand Pelletier},
     title = {Integrability on {Direct} {Limits} of {Banach} {Manifolds}},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {909--956},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 28},
     number = {5},
     year = {2019},
     doi = {10.5802/afst.1617},
     zbl = {1414.53074},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1617/}
}
TY  - JOUR
AU  - Patrick Cabau
AU  - Fernand Pelletier
TI  - Integrability on Direct Limits of Banach Manifolds
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2019
SP  - 909
EP  - 956
VL  - 28
IS  - 5
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1617/
DO  - 10.5802/afst.1617
LA  - en
ID  - AFST_2019_6_28_5_909_0
ER  - 
%0 Journal Article
%A Patrick Cabau
%A Fernand Pelletier
%T Integrability on Direct Limits of Banach Manifolds
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2019
%P 909-956
%V 28
%N 5
%I Université Paul Sabatier, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1617/
%R 10.5802/afst.1617
%G en
%F AFST_2019_6_28_5_909_0
Patrick Cabau; Fernand Pelletier. Integrability on Direct Limits of Banach Manifolds. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 28 (2019) no. 5, pp. 909-956. doi : 10.5802/afst.1617. https://afst.centre-mersenne.org/articles/10.5802/afst.1617/

[1] Ralph Abraham; Jerrold E. Marsden; Tudor Ratiu Manifolds, tensor analysis, and applications, Applied Mathematical Sciences, 75, Springer, 1988 | MR | Zbl

[2] Mihai Anastasiei Banach Lie algebroids, An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.), Volume 57 (2011) no. 2, pp. 409-416 | MR | Zbl

[3] Jan Boman Differentiability of a function and of its compositions with functions of one variable, Math. Scand., Volume 20 (1967), pp. 249-268 | DOI | MR | Zbl

[4] Nicolas Bourbaki Éléments de mathématique. Algèbre. Chapitres 1 à 3, Springer, 2006 | Zbl

[5] David Chillingworth; Peter Stefan Integrability of singular distributions on Banach manifolds, Math. Proc. Camb. Philos. Soc., Volume 79 (1976) no. 1, pp. 117-128 | DOI | MR | Zbl

[6] Jorge Cortés; Manuel De León; Juan C. Marrero; Eduardo Martínez Non holonomic Lagrangian systems on Lie algebroids, Discrete Contin. Dyn. Syst., Volume 24 (2009) no. 2, pp. 213-271 | DOI | Zbl

[7] Ana Bela Cruzeiro; Shizan Fang Weak Levi-Civita connection for the damped metric on the Riemannian path space and vanishing of Ricci tensor in adapted differential geometry, J. Funct. Anal., Volume 185 (2001) no. 2, pp. 681-698 | DOI | MR | Zbl

[8] Rafael Dahmen Direct limit constructions in infinite dimensional Lie theory, Universität Paderborn (Germany) (2011) (Ph. D. Thesis)

[9] Christopher T. J. Dodson; George N. Galanis Second order tangent bundles of infinite dimensional manifolds, J. Geom. Phys., Volume 52 (2004) no. 2, pp. 127-136 | DOI | MR | Zbl

[10] Alfred Frölicher; Andreas Kriegl Linear spaces and differentiation theory, Pure and Applied Mathematics, John Wiley & Sons, 1988 | Zbl

[11] Helge Glöckner Direct limit Lie groups and manifolds, J. Math. Kyoto Univ., Volume 43 (2003) no. 1, pp. 2-26 | MR | Zbl

[12] Helge Glöckner Fundamentals of direct limit Lie theory, Compos. Math., Volume 141 (2005) no. 6, pp. 1551-1577 | DOI | MR | Zbl

[13] Helge Glöckner Direct limits of infinite-dimensional Lie groups compared to direct limits in related categories (2006) (https://arxiv.org/abs/math/0606078) | Zbl

[14] Helge Glöckner Direct limits of infinite-dimensional Lie groups compared to direct limits in related categories, J. Funct. Anal., Volume 245 (2007) no. 1, pp. 19-61 | DOI | MR | Zbl

[15] Janusz Grabowski; Michał Jóźwikowski Pontryagin maximum principle on almost Lie algebroids, SIAM J. Control Optimization, Volume 49 (2011) no. 3, pp. 1306-1357 | DOI | MR | Zbl

[16] Darrell W. Hajek; George E. Strecker Direct limits of Hausdorff spaces, Academia, Prague, 1972, pp. 165-169 | Zbl

[17] Vagn Lundsgaard Hansen Some theorems on direct limits of expanding sequences of manifolds, Math. Scand., Volume 29 (1971), pp. 5-36 | DOI | MR | Zbl

[18] Horst Herrlich Separation axioms and direct limits, Can. Math. Bull., Volume 12 (1969), pp. 337-338 | DOI | MR | Zbl

[19] Takeshi Hirai; Hiroaki Shimomura; Nobuhiko Tatsuuma; Etsuko Hirai Inductive limits of topologies, their direct products, and problems related to algebraic structures, J. Math. Kyoto Univ., Volume 41 (2001) no. 3, pp. 475-505 | DOI | MR | Zbl

[20] Mikhail V. Karasëv Analogues of the objects of Lie group theory for nonlinear Poisson brackets, Math. USSR, Izv., Volume 28 (1987), pp. 497-527 | DOI | Zbl

[21] Andreas Kriegl; Peter W. Michor The convenient setting of global analysis, Mathematical Surveys and Monographs, 53, American Mathematical Society, 1997 | MR | Zbl

[22] Serge Lang Differential and Riemannian manifolds, Graduate Texts in Mathematics, 160, Springer, 1995 | MR | Zbl

[23] Manuel de León; Juan C. Marrero; David Martín de Diego Linear almost Poisson structures and Hamilton–Jacobi equation. Applications to nonholonomic mechanics, J. Geom. Mech., Volume 2 (2010) no. 2, pp. 159-198 | DOI | MR | Zbl

[24] Gabriel Loaiza; Héctor R. Quiceno A q-exponential statistical Banach manifold, J. Math. Anal. Appl., Volume 398 (2013) no. 2, pp. 466-476 | Zbl

[25] Charles-Michel Marle Differential calculus on a Lie algebroid and Poisson manifolds, The J. A. Pereira da Silva birthday schrift (Textos de Matemática. Série B.), Volume 32, Universidade de Coimbra, 2002, pp. 83-149 | MR | Zbl

[26] F. Pelletier Integrability of weak distributions on Banach manifolds, Indag. Math., New Ser., Volume 23 (2012) no. 3, pp. 214-242 | DOI | MR | Zbl

[27] Pedro Pérez Carreras; José Bonet Barrelled locally convex spaces, North-Holland Mathematics Studies, 131, North-Holland, 1987 | MR | Zbl

[28] Paul Popescu; Marcela Popescu Anchored vector bundles and Lie algebroids, Lie algebroids and related topics in differential geometry (Warsaw, 2000) (Banach Center Publications), Volume 54, Polish Academy of Sciences, 2001, pp. 51-69 | MR | Zbl

[29] Jean Pradines Théorie de Lie pour les groupoïdes différentiables. Relations entre propriétés locales et globales, C. R. Math. Acad. Sci. Paris, Volume 263 (1966), pp. 907-910 | MR | Zbl

[30] Peter Stefan Integrability of systems of vector fields, J. Lond. Math. Soc., Volume 21 (1980) no. 3, pp. 544-556 | DOI | MR | Zbl

[31] Héctor J. Sussmann Orbits of families of vector fields and integrability of distributions, Trans. Am. Math. Soc., Volume 180 (1973), pp. 171-188 | DOI | MR | Zbl

[32] Jaak Vilms Connections on tangent bundles, J. Differ. Geom., Volume 1 (1967), pp. 235-243 | DOI | MR | Zbl

[33] Alan Weinstein Symplectic groupoids and Poisson manifolds, Bull. Am. Math. Soc., Volume 16 (1987) no. 1, pp. 101-104 | DOI | MR | Zbl

Cited by Sources: