logo AFST

Integrability on Direct Limits of Banach Manifolds
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 28 (2019) no. 5, pp. 909-956.

Dans cet article, on s’intéresse à l’étude de divers objets rencontrés dans le cadre de limites directes de fibrés de Banach, munis d’une ancre, au dessus de certaines variétés apparaissant comme limites directes de variétés de Banach. En particulier, on donne un critère d’intégrabilité pour des distributions sur de telles variétés qui sont localement des limites directes de suites particulières d’images d’ancres banachiques.

In this paper, we study several objects in the framework of direct limits of anchored Banach bundles over particular convenient manifolds (direct limits of Banach manifolds). In particular, we give a criterion of integrability for distributions on such convenient manifolds which are locally direct limits of particular sequences of Banach anchor ranges.

Reçu le :
Accepté le :
Publié le :
DOI : https://doi.org/10.5802/afst.1617
Classification : 58A30,  18A30,  46T05,  17B66,  37K30,  22E65
Mots clés : Integrable distribution, direct limit, convenient structures, almost Lie Banach algebroid, almost Lie bracket, Koszul connection, anchor range
@article{AFST_2019_6_28_5_909_0,
     author = {Patrick Cabau and Fernand Pelletier},
     title = {Integrability on {Direct} {Limits} of {Banach} {Manifolds}},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {909--956},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 28},
     number = {5},
     year = {2019},
     doi = {10.5802/afst.1617},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1617/}
}
Patrick Cabau; Fernand Pelletier. Integrability on Direct Limits of Banach Manifolds. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 28 (2019) no. 5, pp. 909-956. doi : 10.5802/afst.1617. https://afst.centre-mersenne.org/articles/10.5802/afst.1617/

[1] Ralph Abraham; Jerrold E. Marsden; Tudor Ratiu Manifolds, tensor analysis, and applications, Applied Mathematical Sciences, Volume 75, Springer, 1988 | MR 960687 | Zbl 0875.58002

[2] Mihai Anastasiei Banach Lie algebroids, An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.), Volume 57 (2011) no. 2, pp. 409-416 | MR 2933392 | Zbl 1265.58002

[3] Jan Boman Differentiability of a function and of its compositions with functions of one variable, Math. Scand., Volume 20 (1967), pp. 249-268 | Article | MR 237728 | Zbl 0182.38302

[4] Nicolas Bourbaki Éléments de mathématique. Algèbre. Chapitres 1 à 3, Springer, 2006 | Zbl 1103.13001

[5] David Chillingworth; Peter Stefan Integrability of singular distributions on Banach manifolds, Math. Proc. Camb. Philos. Soc., Volume 79 (1976) no. 1, pp. 117-128 | Article | MR 397766 | Zbl 0317.58002

[6] Jorge Cortés; Manuel De León; Juan C. Marrero; Eduardo Martínez Non holonomic Lagrangian systems on Lie algebroids, Discrete Contin. Dyn. Syst., Volume 24 (2009) no. 2, pp. 213-271 | Article | Zbl 1161.70336

[7] Ana Bela Cruzeiro; Shizan Fang Weak Levi-Civita connection for the damped metric on the Riemannian path space and vanishing of Ricci tensor in adapted differential geometry, J. Funct. Anal., Volume 185 (2001) no. 2, pp. 681-698 | Article | MR 1856279 | Zbl 1011.60034

[8] Rafael Dahmen Direct limit constructions in infinite dimensional Lie theory (2011) (Ph. D. Thesis)

[9] Christopher T. J. Dodson; George N. Galanis Second order tangent bundles of infinite dimensional manifolds, J. Geom. Phys., Volume 52 (2004) no. 2, pp. 127-136 | Article | MR 2088972 | Zbl 1076.58002

[10] Alfred Frölicher; Andreas Kriegl Linear spaces and differentiation theory, Pure and Applied Mathematics, John Wiley & Sons, 1988 | Zbl 0657.46034

[11] Helge Glöckner Direct limit Lie groups and manifolds, J. Math. Kyoto Univ., Volume 43 (2003) no. 1, pp. 2-26 | MR 2028699 | Zbl 1056.22013

[12] Helge Glöckner Fundamentals of direct limit Lie theory, Compos. Math., Volume 141 (2005) no. 6, pp. 1551-1577 | Article | MR 2188449 | Zbl 1082.22012

[13] Helge Glöckner Direct limits of infinite-dimensional Lie groups compared to direct limits in related categories (2006) (https://arxiv.org/abs/math/0606078)

[14] Helge Glöckner Direct limits of infinite-dimensional Lie groups compared to direct limits in related categories, J. Funct. Anal., Volume 245 (2007) no. 1, pp. 19-61 | Article | MR 2310802 | Zbl 1119.22012

[15] Janusz Grabowski; Michał Jóźwikowski Pontryagin maximum principle on almost Lie algebroids, SIAM J. Control Optimization, Volume 49 (2011) no. 3, pp. 1306-1357 | Article | MR 2818883 | Zbl 1228.49017

[16] Darrell W. Hajek; George E. Strecker Direct limits of Hausdorff spaces, Academia, Prague, 1972, pp. 165-169 | Zbl 0306.54017

[17] Vagn Lundsgaard Hansen Some theorems on direct limits of expanding sequences of manifolds, Math. Scand., Volume 29 (1971), pp. 5-36 | Article | MR 319206 | Zbl 0229.58005

[18] Horst Herrlich Separation axioms and direct limits, Can. Math. Bull., Volume 12 (1969), p. 337-338 | Article | MR 253272 | Zbl 0179.51103

[19] Takeshi Hirai; Hiroaki Shimomura; Nobuhiko Tatsuuma; Etsuko Hirai Inductive limits of topologies, their direct products, and problems related to algebraic structures, J. Math. Kyoto Univ., Volume 41 (2001) no. 3, pp. 475-505 | Article | MR 1878717 | Zbl 1006.54051

[20] Mikhail V. Karasëv Analogues of the objects of Lie group theory for nonlinear Poisson brackets, Math. USSR, Izv., Volume 28 (1987), pp. 497-527 | Article | Zbl 0624.58007

[21] Andreas Kriegl; Peter W. Michor The convenient setting of global analysis, Mathematical Surveys and Monographs, Volume 53, American Mathematical Society, 1997 | MR 1471480 | Zbl 0889.58001

[22] Serge Lang Differential and Riemannian manifolds, Graduate Texts in Mathematics, Volume 160, Springer, 1995 | MR 1335233 | Zbl 0824.58003

[23] Manuel de León; Juan C. Marrero; David Martín de Diego Linear almost Poisson structures and Hamilton–Jacobi equation. Applications to nonholonomic mechanics, J. Geom. Mech., Volume 2 (2010) no. 2, pp. 159-198 | Article | MR 2660714 | Zbl 1226.37045

[24] Gabriel Loaiza; Héctor R. Quiceno A q-exponential statistical Banach manifold, J. Math. Anal. Appl., Volume 398 (2013) no. 2, pp. 466-476 | Zbl 1254.82005

[25] Charles-Michel Marle Differential calculus on a Lie algebroid and Poisson manifolds, The J. A. Pereira da Silva birthday schrift (Textos de Matemática. Série B.) Volume 32, Universidade de Coimbra, 2002, pp. 83-149 | MR 1969436 | Zbl 1031.53114

[26] F. Pelletier Integrability of weak distributions on Banach manifolds, Indag. Math., New Ser., Volume 23 (2012) no. 3, pp. 214-242 | Article | MR 2948622 | Zbl 1286.46087

[27] Pedro Pérez Carreras; José Bonet Barrelled locally convex spaces, North-Holland Mathematics Studies, Volume 131, North-Holland, 1987 | MR 880207 | Zbl 0614.46001

[28] Paul Popescu; Marcela Popescu Anchored vector bundles and Lie algebroids, Lie algebroids and related topics in differential geometry (Warsaw, 2000) (Banach Center Publications) Volume 54, Polish Academy of Sciences, 2001, pp. 51-69 | MR 1881649 | Zbl 1021.22001

[29] Jean Pradines Théorie de Lie pour les groupoïdes différentiables. Relations entre propriétés locales et globales, C. R. Math. Acad. Sci. Paris, Volume 263 (1966), pp. 907-910 | MR 214103 | Zbl 0147.41102

[30] Peter Stefan Integrability of systems of vector fields, J. Lond. Math. Soc., Volume 21 (1980) no. 3, pp. 544-556 | Article | MR 577729 | Zbl 0432.58002

[31] Héctor J. Sussmann Orbits of families of vector fields and integrability of distributions, Trans. Am. Math. Soc., Volume 180 (1973), pp. 171-188 | Article | MR 321133 | Zbl 0274.58002

[32] Jaak Vilms Connections on tangent bundles, J. Differ. Geom., Volume 1 (1967), pp. 235-243 | Article | MR 229168 | Zbl 0162.53603

[33] Alan Weinstein Symplectic groupoids and Poisson manifolds, Bull. Am. Math. Soc., Volume 16 (1987) no. 1, pp. 101-104 | Article | MR 866024 | Zbl 0618.58020