In articles [8, 9] we studied tube hypersurfaces in that are 2-nondegenerate and uniformly Levi degenerate of rank 1. In particular, we showed that the vanishing of the CR-curvature of such a hypersurface is equivalent to the Monge equation with respect to one of the variables. In the present paper we provide an alternative shorter derivation of this equation by utilizing two invariants discovered by S. Pocchiola. We also investigate Pocchiola’s invariants in the rigid case and give a partial classification of rigid 2-nondegenerate uniformly Levi degenerate of rank 1 hypersurfaces with vanishing CR-curvature.
Dans nos articles précédents, nous avons étudié les hypersurfaces tubes dans l’espace euclidien complexe de dimension trois, qui sont 2-non-dégénérées et uniformément Levi dégénérées de rang 1. Nous avons montré en particulier que l’annulation de la courbure CR d’une telle hypersurface est équivalente à une équation de Monge par rapport à une des variables. Dans cet article nous dérivons cette équation par une approche alternative plus rapide, en utilisant deux invariants découverts par S. Pocchiola. Nous étudions également les invariants de Pocchiola dans le cas rigide et donnons une classification partielle des hypersurfaces rigides 2-non-dégénérées uniformément Levi dégénérées de rang 1 à courbure CR nulle.
Accepted:
Published online:
DOI: 10.5802/afst.1618
Keywords: CR-curvature, tube and rigid hypersurfaces, the Monge–Ampère equation, the Monge equation, Pocchiola’s invariants
Alexander Isaev 1
@article{AFST_2019_6_28_5_957_0, author = {Alexander Isaev}, title = {Zero {CR-curvature} equations for {Levi} degenerate hypersurfaces via {Pocchiola{\textquoteright}s} invariants}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {957--976}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 28}, number = {5}, year = {2019}, doi = {10.5802/afst.1618}, mrnumber = {3994310}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1618/} }
TY - JOUR AU - Alexander Isaev TI - Zero CR-curvature equations for Levi degenerate hypersurfaces via Pocchiola’s invariants JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2019 SP - 957 EP - 976 VL - 28 IS - 5 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1618/ DO - 10.5802/afst.1618 LA - en ID - AFST_2019_6_28_5_957_0 ER -
%0 Journal Article %A Alexander Isaev %T Zero CR-curvature equations for Levi degenerate hypersurfaces via Pocchiola’s invariants %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2019 %P 957-976 %V 28 %N 5 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1618/ %R 10.5802/afst.1618 %G en %F AFST_2019_6_28_5_957_0
Alexander Isaev. Zero CR-curvature equations for Levi degenerate hypersurfaces via Pocchiola’s invariants. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 28 (2019) no. 5, pp. 957-976. doi : 10.5802/afst.1618. https://afst.centre-mersenne.org/articles/10.5802/afst.1618/
[1] CR structures with group action and extendability of CR functions, Invent. Math., Volume 82 (1985) no. 2, pp. 359-396 | DOI | Numdam | MR | Zbl
[2] Sur la géométrie pseudo-conforme des hypersurfaces de l’espace de deux variables complexes: I, Ann. Mat. Pura Appl., Volume 11 (1933) no. 1, pp. 17-90 II, Ann. Scuola Norm. Sup. Pisa. 1 (1932), p. 333–354. | DOI | MR | Zbl
[3] Explicit description of spherical rigid hypersurfaces in , Complex Anal. Synerg., Volume 1 (2015), 2, 10 pages | DOI | Zbl
[4] CR-manifolds of dimension 5: a Lie algebra approach, J. Reine Angew. Math., Volume 604 (2007), pp. 47-71 | MR | Zbl
[5] Differential -structures for equivalences of 2-nondegenerate Levi rank 1 hypersurfaces (2019) (https://arxiv.org/abs/1901.02028)
[6] A new example of a uniformly Levi degenerate hypersurface in , Ark. Mat., Volume 41 (2003) no. 1, pp. 85-94 erratum Ark. Mat. 45 (2007), p. 269–271
[7] Spherical tube hypersurfaces, Lecture Notes in Mathematics, 2020, Springer, 2011, xii+220 pages | MR | Zbl
[8] Affine rigidity of Levi degenerate tube hypersurfaces, J. Differ. Geom., Volume 104 (2016) no. 1, pp. 111-141 | DOI | MR | Zbl
[9] On the CR-curvature of Levi degenerate tube hypersurfaces, Methods Appl. Anal., Volume 23 (2016) no. 4, pp. 317-328 | MR | Zbl
[10] Reduction of five-dimensional uniformly Levi degenerate CR structures to absolute parallelisms, J. Geom. Anal., Volume 23 (2013) no. 3, pp. 1571-1605 | DOI | MR | Zbl
[11] Conformal metrics, Topics in modern function theory (Ramanujan Mathematical Society Lecture Notes Series), Volume 19, Ramanujan Mathematical Society, 2013, pp. 41-83 | MR | Zbl
[12] Differential-geometric characterizations of complete intersections, J. Differ. Geom., Volume 44 (1996) no. 1, pp. 32-73 | DOI | MR | Zbl
[13] On Monge’s Differential Equation, Am. Math. Mon., Volume 43 (1936) no. 5, pp. 284-286 | DOI | MR | Zbl
[14] The equivalence problem for five-dimensional Levi degenerate CR manifolds, Int. Math. Res. Not., Volume 2014 (2014) no. 20, pp. 5602-5647 | DOI | MR | Zbl
[15] Explicit absolute parallelism for 2-nondegenerate real hypersurfaces of constant levi rank 1, J. Geom. Anal. (2018) | DOI
[16] Explicit absolute parallelism for 2-nondegenerate real hypersurfaces of constant Levi rank 1 (2013) (https://arxiv.org/abs/1312.6400)
[17] The local equivalence problem for 7-dimensional, 2-nondegenerate CR manifolds whose cubic form is of conformal unitary type (2015) (https://arxiv.org/abs/1511.04019)
[18] Absolute parallelism for 2-nondegenerate CR structures via bigraded Tanaka prolongation (2017) (https://arxiv.org/abs/1704.03999)
[19] A normal form for rigid hypersurfaces in , Am. J. Math., Volume 113 (1991) no. 5, pp. 877-910 | Zbl
[20] The explicit general solution of trivial Monge–Ampère equation, Comment. Math. Helv., Volume 75 (2000) no. 1, pp. 125-133 | DOI | MR | Zbl
Cited by Sources: