En utilisant la dualité des cônes positifs, nous montrons que l’application de la transformation polaire de l’analyse convexe aux invariants positivité locaux pour les diviseurs donne des invariants de positivité locaux intéressants et nouveaux pour les courbes. Ces nouveaux invariants ont de belles propriétés similaires à celles des diviseurs. En particulier, cela nous permet d’établir un critère d’amplitude de type Seshadri pour les courbes mobiles, et de caractériser les composantes divisorielles du locus non-Kähler d’une classe grande.
Using the duality of positive cones, we show that applying the polar transform from convex analysis to local positivity invariants for divisors gives interesting and new local positivity invariants for curves. These new invariants have nice properties similar to those for divisors. In particular, this enables us to establish a Seshadri type ampleness criterion for movable curves, and give a characterization of the divisorial components of the non-Kähler locus of a big class.
Accepté le :
Publié le :
Nicholas McCleerey 1 ; Jian Xiao 2
@article{AFST_2020_6_29_2_247_0, author = {Nicholas McCleerey and Jian Xiao}, title = {Polar transform and local positivity for curves}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {247--269}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 29}, number = {2}, year = {2020}, doi = {10.5802/afst.1631}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1631/} }
TY - JOUR AU - Nicholas McCleerey AU - Jian Xiao TI - Polar transform and local positivity for curves JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2020 SP - 247 EP - 269 VL - 29 IS - 2 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1631/ DO - 10.5802/afst.1631 LA - en ID - AFST_2020_6_29_2_247_0 ER -
%0 Journal Article %A Nicholas McCleerey %A Jian Xiao %T Polar transform and local positivity for curves %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2020 %P 247-269 %V 29 %N 2 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1631/ %R 10.5802/afst.1631 %G en %F AFST_2020_6_29_2_247_0
Nicholas McCleerey; Jian Xiao. Polar transform and local positivity for curves. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 29 (2020) no. 2, pp. 247-269. doi : 10.5802/afst.1631. https://afst.centre-mersenne.org/articles/10.5802/afst.1631/
[1] A primer on Seshadri constants, Interactions of classical and numerical algebraic geometry (Contemporary Mathematics), Volume 496, American Mathematical Society, 2009, pp. 33-70 | DOI | MR | Zbl
[2] Cônes positifs des variétés complexes compactes, Ph. D. Thesis, Université Joseph-Fourier-Grenoble I (France) (2002)
[3] Divisorial Zariski decompositions on compact complex manifolds, Ann. Sci. Éc. Norm. Supér., Volume 37 (2004) no. 1, pp. 45-76 | DOI | Numdam | MR | Zbl
[4] The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension, J. Algebr. Geom., Volume 22 (2013) no. 2, pp. 201-248 | DOI | Zbl
[5] Monge-Ampère equations in big cohomology classes, Acta Math., Volume 205 (2010) no. 2, pp. 199-262 | DOI | Zbl
[6] Differentiability of volumes of divisors and a problem of Teissier, J. Algebr. Geom., Volume 18 (2009) no. 2, pp. 279-308 | DOI | MR | Zbl
[7] Kähler currents and null loci, Invent. Math., Volume 202 (2015) no. 3, pp. 1167-1198 | DOI | Zbl
[8] Regularization of closed positive currents and intersection theory, J. Algebr. Geom., Volume 1 (1992) no. 3, pp. 361-409 | MR | Zbl
[9] Singular Hermitian metrics on positive line bundles, Complex algebraic varieties (Bayreuth, 1990) (Lecture Notes in Mathematics), Volume 1507, Springer, 1992, pp. 87-104 | MR | Zbl
[10] A numerical criterion for very ample line bundles, J. Differ. Geom., Volume 37 (1993) no. 2, pp. 323-374 | DOI | MR | Zbl
[11] Analytic methods in algebraic geometry, Surveys of Modern Mathematics, 1, International Press; Higher Education Press, 2012, viii+231 pages | MR | Zbl
[12] Complex Analytic and Differential Geometry, 2012 (online book available at https://www-fourier.ujf-grenoble.fr/~demailly/manuscripts/agbook.pdf, Institut Fourier, Grenoble)
[13] Numerical characterization of the Kähler cone of a compact Kähler manifold, Ann. Math., Volume 159 (2004) no. 3, pp. 1247-1274 | DOI | Zbl
[14] Local positivity of ample line bundles, J. Differ. Geom., Volume 42 (1995) no. 2, pp. 193-219 | MR | Zbl
[15] Seshadri constants for curve classes (https://arxiv.org/abs/1707.07347)
[16] Infinitesimal Newton–Okounkov bodies and jet separation, Duke Math. J., Volume 166 (2017) no. 7, pp. 1349-1376 | DOI | MR | Zbl
[17] Positivity in algebraic geometry. I, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 48, Springer, 2004, xviii+387 pages (Classical setting: line bundles and linear series) | MR | Zbl
[18] Comparing numerical dimensions, Algebra Number Theory, Volume 7 (2013) no. 5, pp. 1065-1100 | DOI | MR | Zbl
[19] Convexity and Zariski decomposition structure, Geom. Funct. Anal., Volume 26 (2016) no. 4, pp. 1135-1189 | DOI | MR | Zbl
[20] Positivity functions for curves on algebraic varieties (2016) (https://arxiv.org/abs/1607.05337) | Zbl
[21] Zariski-decomposition and abundance, MSJ Memoirs, 14, Mathematical Society of Japan, 2004, xiv+277 pages | MR | Zbl
[22] Analyticity of sets associated to Lelong numbers and the extension of closed positive currents, Invent. Math., Volume 27 (1974) no. 1, pp. 53-156 | MR | Zbl
[23] The Calabi–Yau theorem and Kähler currents, Adv. Theor. Math. Phys., Volume 20 (2016) no. 2, pp. 381-404 | DOI | MR | Zbl
[24] Duality between the pseudoeffective and the movable cone on a projective manifold (2016) (with an appendix by S. Boucksom, https://arxiv.org/abs/1602.03778) | Zbl
[25] Characterizing volume via cone duality, Math. Ann., Volume 369 (2017) no. 3-4, pp. 1527-1555 | DOI | MR | Zbl
Cité par Sources :