logo AFST
On the classification of normal G-varieties with spherical orbits
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 29 (2020) no. 2, pp. 271-334.

In this article, we investigate the geometry of reductive group actions on algebraic varieties. Given a connected reductive group G, we elaborate on a geometric and combinatorial approach based on Luna–Vust theory to describe every normal G-variety with spherical orbits. This description encompasses the classical case of spherical varieties and the theory of 𝕋-varieties recently introduced by Altmann, Hausen, and Süss.

Dans cet article, nous étudions la géométrie des opérations de groupes réductifs dans les variétés algébriques. Étant donné un groupe algébrique réductif connexe G, nous élaborons une approche géométrique et combinatoire basée sur la théorie de Luna–Vust pour décrire toute G-variété normale avec orbites sphériques. Cette description comprend le cas classique des variétés sphériques et la théorie des 𝕋-variétés introduite récemment par Altmann, Hausen et Süss.

Received:
Accepted:
Published online:
DOI: 10.5802/afst.1632
Classification: 14L30,  14M27,  14M25,  13A18
Keywords: action of algebraic groups, Luna–Vust theory, homogeneous spaces, valuation theory
Kevin Langlois 1

1 Mathematisches Institut, Heinrich Heine Universität, 40225 Düsseldorf, Germany
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AFST_2020_6_29_2_271_0,
     author = {Kevin Langlois},
     title = {On the classification of normal $G$-varieties with spherical orbits},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {271--334},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 29},
     number = {2},
     year = {2020},
     doi = {10.5802/afst.1632},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1632/}
}
TY  - JOUR
AU  - Kevin Langlois
TI  - On the classification of normal $G$-varieties with spherical orbits
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2020
DA  - 2020///
SP  - 271
EP  - 334
VL  - 29
IS  - 2
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1632/
UR  - https://doi.org/10.5802/afst.1632
DO  - 10.5802/afst.1632
LA  - en
ID  - AFST_2020_6_29_2_271_0
ER  - 
%0 Journal Article
%A Kevin Langlois
%T On the classification of normal $G$-varieties with spherical orbits
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2020
%P 271-334
%V 29
%N 2
%I Université Paul Sabatier, Toulouse
%U https://doi.org/10.5802/afst.1632
%R 10.5802/afst.1632
%G en
%F AFST_2020_6_29_2_271_0
Kevin Langlois. On the classification of normal $G$-varieties with spherical orbits. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 29 (2020) no. 2, pp. 271-334. doi : 10.5802/afst.1632. https://afst.centre-mersenne.org/articles/10.5802/afst.1632/

[1] Dmitry Ahiezer Equivariant completions of homogeneous algebraic varieties by homogeneous divisors, Ann. Global Anal. Geom., Volume 1 (1983) no. 1, pp. 49-78 | DOI | MR

[2] Valery Alexeev; Michel Brion Moduli of affine schemes with reductive group action, J. Algebr. Geom., Volume 14 (2005) no. 1, pp. 83-117 | DOI | MR | Zbl

[3] Valery Alexeev; Michel Brion Stable spherical varieties and their moduli, IMRP, Int. Math. Res. Pap. (2006), 46293, 57 pages | MR | Zbl

[4] Klaus Altmann; Jürgen Hausen Polyhedral divisors and algebraic torus actions, Math. Ann., Volume 334 (2006) no. 3, pp. 557-607 | DOI | MR | Zbl

[5] Klaus Altmann; Jürgen Hausen; Hendrik Süss Gluing affine torus actions via divisorial fans, Transform. Groups, Volume 13 (2008) no. 2, pp. 215-242 | DOI | MR | Zbl

[6] Klaus Altmann; Nathan Owen Ilten; Lars Petersen; Hendrik Süss; Robert Vollmert The geometry of T-varieties, Contributions to algebraic geometry (EMS Series of Congress Reports), European Mathematical Society, 2012, pp. 17-69 | Zbl

[7] Ivan V. Arzhantsev Actions of the group SL 2 that are of complexity one, Izv. Ross. Akad. Nauk, Ser. Mat., Volume 61 (1997) no. 4, pp. 3-18 translation in Izv. Math. 61 (1997), no. 4, p. 685-698 | MR

[8] Ivan V. Arzhantsev On the actions of reductive groups with a one-parameter family of spherical orbits, Mat. Sb., Volume 188 (1997) no. 5, pp. 3-20 translation in Sb. Math. 188 (1997), no. 5, p. 639-655 | MR | Zbl

[9] Ivan V. Arzhantsev On the normality of closures of spherical orbits, Funkts. Anal. Prilozh., Volume 31 (1997) no. 4, pp. 66-69 translation in Funct. Anal. Appl. 31 (1997), no. 4, p. 278-280 | MR | Zbl

[10] Ivan V. Arzhantsev A classification of reductive linear groups with spherical orbits, J. Lie Theory, Volume 12 (2002) no. 1, pp. 289-299 | MR | Zbl

[11] Ivan V. Arzhantsev Invariant differential operators and representations with spherical orbits, Symmetry in nonlinear mathematical physics, Part 1, 2 (Kyiv, 2001) (Proceedings of the Institute of Mathematics of the National Academy of Sciences of Ukraine. Mathematics and its Applications), Volume 43(2), Institute of Mathematics of NAS of Ukraine, 2002, pp. 419-424 | MR | Zbl

[12] Roman S. Avdeev On solvable spherical subgroups of semisimple algebraic groups, Trans. Mosc. Math. Soc. (2011), pp. 1-44 | MR | Zbl

[13] Roman S. Avdeev Strongly solvable spherical subgroups and their combinatorial invariants, Sel. Math., New Ser., Volume 21 (2015) no. 3, pp. 931-993 | DOI | MR | Zbl

[14] Victor V. Batyrev Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties, J. Algebr. Geom., Volume 3 (1994) no. 3, pp. 493-535 | MR | Zbl

[15] Paolo Bravi; Guido Pezzini Wonderful subgroups of reductive groups and spherical systems, J. Algebra, Volume 409 (2014), pp. 101-147 | DOI | MR | Zbl

[16] Paolo Bravi; Guido Pezzini The spherical systems of the wonderful reductive subgroups, J. Lie Theory, Volume 25 (2015) no. 1, pp. 105-123 | MR | Zbl

[17] Paolo Bravi; Guido Pezzini Primitive wonderful varieties, Math. Z., Volume 282 (2016) no. 3-4, pp. 1067-1096 | DOI | MR

[18] Michel Brion Sur la géométrie des variétés sphériques, Comment. Math. Helv., Volume 66 (1991) no. 2, pp. 237-262 | DOI | Zbl

[19] Michel Brion Invariants et covariants des groupes algébriques réductifs., Summer course note at Monastir, 1996 (https://www-fourier.ujf-grenoble.fr/~mbrion/monastirrev.pdf)

[20] Michel Brion Curves and divisors in spherical varieties, Algebraic groups and Lie groups (Australian Mathematical Society Lecture Series), Volume 9, Cambridge University Press, 1997, pp. 21-34 | MR | Zbl

[21] Michel Brion; Dominique Luna; Thierry Vust Espaces homogènes sphériques, Invent. Math., Volume 84 (1986) no. 3, pp. 617-632 | DOI | Zbl

[22] Michel Brion; Franz Pauer Valuations des espaces homogènes sphériques, Comment. Math. Helv., Volume 62 (1987) no. 2, pp. 265-285 | DOI | Zbl

[23] Jean-Louis Colliot-Thélène; Boris Kunyavskiĭ; Vladimir L. Popov; Zinovy Reichstein Is the function field of a reductive Lie algebra purely transcendental over the field of invariants for the adjoint action?, Compos. Math., Volume 147 (2011) no. 2, pp. 428-466 | DOI | MR | Zbl

[24] Stéphanie Cupit-Foutou Wonderful varieties: A geometrical realization (2009) (https://arxiv.org/abs/0907.2852)

[25] Corrado De Concini; Claudio Procesi Complete symmetric varieties, Invariant theory (Montecatini, 1982) (Lecture Notes in Mathematics), Volume 996, Springer, 1983, pp. 1-44 | DOI | MR | Zbl

[26] Michel Demazure Anneaux gradués normaux, Introduction à la théorie des singularités, II (Travaux en Cours), Volume 37, Hermann, 1988, pp. 35-68 | Zbl

[27] Igor V. Dolgačev Automorphic forms, and quasihomogeneous singularities, Funkts. Anal. Prilozh., Volume 9 (1975) no. 2, pp. 67-68 | MR | Zbl

[28] Hubert Flenner; Mikhail Zaidenberg Normal affine surfaces with -actions, Osaka J. Math., Volume 40 (2003) no. 4, pp. 981-1009 | MR | Zbl

[29] William Fulton Introduction to toric varieties, Annals of Mathematics Studies, 131, Princeton University Press, 1993 (The William H. Roever Lectures in Geometry) | MR | Zbl

[30] William Fulton; Robert MacPherson; Frank Sottile; Bernd Sturmfels Intersection theory on spherical varieties, J. Algebr. Geom., Volume 4 (1995) no. 1, pp. 181-193 | MR | Zbl

[31] Giuliano Gagliardi A combinatorial smoothness criterion for spherical varieties, Manuscr. Math., Volume 146 (2015) no. 3-4, pp. 445-461 | DOI | MR | Zbl

[32] Giuliano Gagliardi; Johannes Hofscheier The generalized Mukai conjecture for symmetric varieties, Trans. Am. Math. Soc., Volume 369 (2017) no. 4, pp. 2615-2649 | DOI | MR | Zbl

[33] Alexander Grothendieck Éléments de géométrie algébrique. II. Étude globale élémentaire de quelques classes de morphismes, Publ. Math., Inst. Hautes Étud. Sci., Volume 8 (1961), pp. 1-222 | Numdam | Zbl

[34] Alexander Grothendieck Revêtements étales et groupe fondamental. Fasc. I: Exposés 1 à 5, Séminaire de Géométrie Algébrique, 1960/61, Institut des Hautes Études Scientifiques, 1963

[35] Jürgen Hausen; Hendrik Süss The Cox ring of an algebraic variety with torus action, Adv. Math., Volume 225 (2010) no. 2, pp. 977-1012 | DOI | MR | Zbl

[36] George Kempf; Finn Faye Knudsen; David Mumford; Bernard Saint-Donat Toroidal embeddings. I, Lecture Notes in Mathematics, 339, Springer, 1973 | MR | Zbl

[37] Friedrich Knop Weylgruppe und Momentabbildung, Invent. Math., Volume 99 (1990) no. 1, pp. 1-23 | DOI | MR | Zbl

[38] Friedrich Knop The Luna–Vust theory of spherical embeddings, Proceedings of the Hyderabad Conference on Algebraic Groups (Hyderabad, 1989) (1991), pp. 225-249 | Zbl

[39] Friedrich Knop Über Bewertungen, welche unter einer reduktiven Gruppe invariant sind, Math. Ann., Volume 295 (1993) no. 2, pp. 333-363 | DOI | Zbl

[40] Friedrich Knop Über Hilberts vierzehntes Problem für Varietäten mit Kompliziertheit eins, Math. Z., Volume 213 (1993) no. 1, pp. 33-36 | DOI | Zbl

[41] János Kollár; Shigefumi Mori Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, 134, Cambridge University Press, 1998 (With the collaboration of C. H. Clemens and A. Corti, Translated from the 1998 Japanese original) | MR | Zbl

[42] Kevin Langlois Clôture intégrale et opérations de tores algébriques de complexité un dans les variétés affines, Transform. Groups, Volume 18 (2013) no. 3, pp. 739-765 | DOI | MR | Zbl

[43] Kevin Langlois Polyhedral divisors and torus actions of complexity one over arbitrary fields, J. Pure Appl. Algebra, Volume 219 (2015) no. 6, pp. 2015-2045 | DOI | MR | Zbl

[44] Kevin Langlois Singularités canoniques et actions horosphériques, C. R. Math. Acad. Sci. Paris, Volume 355 (2017) no. 4, pp. 365-369 | DOI | MR | Zbl

[45] Kevin Langlois; Clélia Pech; Michel Raibaut Stringy invariants for horospherical varieties of complexity one, Algebr. Geom., Volume 6 (2019) no. 3, pp. 346-383 | MR | Zbl

[46] Kevin Langlois; Ronan Terpereau On the geometry of normal horospherical G-varieties of complexity one, J. Lie Theory, Volume 26 (2016) no. 1, pp. 49-78 | MR | Zbl

[47] Kevin Langlois; Ronan Terpereau The Cox ring of a complexity-one horospherical variety, Arch. Math., Volume 108 (2017) no. 1, pp. 17-27 | DOI | MR | Zbl

[48] Qing Liu Algebraic geometry and arithmetic curves, Oxford Graduate Texts in Mathematics, 6, Oxford University Press, 2002 (Translated from the French by Reinie Erné, Oxford Science Publications) | MR | Zbl

[49] Ivan V. Losev Uniqueness property for spherical homogeneous spaces, Duke Math. J., Volume 147 (2009) no. 2, pp. 315-343 | DOI | MR | Zbl

[50] Dominique Luna Toute variété magnifique est sphérique, Transform. Groups, Volume 1 (1996) no. 3, pp. 249-258 | DOI | Zbl

[51] Dominique Luna Grosses cellules pour les variétés sphériques, Algebraic groups and Lie groups (Australian Mathematical Society Lecture Series), Volume 9, Cambridge University Press, 1997, pp. 267-280

[52] Dominique Luna Variétés sphériques de type A, Publ. Math., Inst. Hautes Étud. Sci., Volume 94 (2001), pp. 161-226 | DOI | Numdam | Zbl

[53] Dominique Luna; Thierry Vust Plongements d’espaces homogènes, Comment. Math. Helv., Volume 58 (1983) no. 2, pp. 186-245 | DOI | Zbl

[54] Hideyuki Matsumura Commutative ring theory, Cambridge Studies in Advanced Mathematics, 8, Cambridge University Press, 1989 (Translated from the Japanese by M. Reid) | MR | Zbl

[55] David Mumford Abelian varieties, Tata Institute of Fundamental Research Studies in Mathematics, 5, Oxford University Press, 1970 | MR | Zbl

[56] Boris Pasquier Variétés horosphériques de Fano, Bull. Soc. Math. Fr., Volume 136 (2008) no. 2, pp. 195-225 | DOI | Numdam | MR | Zbl

[57] Boris Pasquier The pseudo-index of horospherical Fano varieties, Int. J. Math., Volume 21 (2010) no. 9, pp. 1147-1156 | DOI | MR | Zbl

[58] Franz Pauer Normale Einbettungen von G/U, Math. Ann., Volume 257 (1981) no. 3, pp. 371-396 | DOI | MR | Zbl

[59] Nicolas Perrin On the geometry of spherical varieties, Transform. Groups, Volume 19 (2014) no. 1, pp. 171-223 | DOI | MR | Zbl

[60] Lars Petersen; Hendrik Süss Torus invariant divisors, Isr. J. Math., Volume 182 (2011), pp. 481-504 | DOI | MR | Zbl

[61] Henry Pinkham Normal surface singularities with C * action, Math. Ann., Volume 227 (1977) no. 2, pp. 183-193 | DOI | MR | Zbl

[62] Roger W. Richardson Principal orbit types for algebraic transformation spaces in characteristic zero, Invent. Math., Volume 16 (1972), pp. 6-14 | DOI | MR | Zbl

[63] Maxwell Rosenlicht A remark on quotient spaces, Anais Acad. Brasil. Ci., Volume 35 (1963), pp. 487-489 | MR | Zbl

[64] Ichirô Satake On representations and compactifications of symmetric Riemannian spaces, Ann. Math., Volume 71 (1960), pp. 77-110 | DOI | MR | Zbl

[65] Jean-Pierre Serre Galois cohomology, Springer, 1997 (Translated from the French by Patrick Ion and revised by the author) | Zbl

[66] Tonny A. Springer Aktionen reduktiver Gruppen auf Varietäten, Algebraische Transformationsgruppen und Invariantentheorie (DMV Seminar), Volume 13, Birkhäuser, 1989, pp. 3-39 | DOI | MR | Zbl

[67] Hideyasu Sumihiro Equivariant completion, J. Math. Kyoto Univ., Volume 14 (1974), pp. 1-28 | DOI | MR

[68] Hendrik Süss Fano threefolds with 2-torus action: a picture book, Doc. Math., Volume 19 (2014), pp. 905-940 | MR | Zbl

[69] Dmitry A. Timashëv Classification of G-manifolds of complexity 1, Izv. Ross. Akad. Nauk, Ser. Mat., Volume 61 (1997) no. 2, pp. 127-162 translation in Izv. Math., 61 (1997), no. 2, p. 363-397 | MR | Zbl

[70] Dmitry A. Timashëv Cartier divisors and geometry of normal G-varieties, Transform. Groups, Volume 5 (2000) no. 2, pp. 181-204 | DOI | MR | Zbl

[71] Dmitry A. Timashëv Torus actions of complexity one, Toric topology (Contemporary Mathematics), Volume 460, American Mathematical Society, 2008, pp. 349-364 | DOI | MR | Zbl

[72] Dmitry A. Timashëv Homogeneous spaces and equivariant embeddings, Encyclopaedia of Mathematical Sciences, 138, Springer, 2011 | MR | Zbl

[73] Èrnest B. Vinberg Complexity of actions of reductive groups, Funkts. Anal. Prilozh., Volume 20 (1986) no. 1, p. 1-13, 96 | DOI | MR

[74] Èrnest B. Vinberg; Vladimir L. Popov A certain class of quasihomogeneous affine varieties, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 36 (1972), pp. 749-764 | MR

[75] Èrnest B. Vinberg; Vladimir L. Popov Invariant theory, Algebraic geometry, 4 (Russian) (Itogi Nauki i Tekhniki. Seriya Sovremennye Problemy Matematiki. Fundamental’nye Napravleniya), Vsesoyuznyĭ Institut Nauchnoĭ i Tekhnicheskoĭ Informatsii, 1989, pp. 137-314 | Zbl

[76] Thierry Vust Plongements d’espaces symétriques algébriques: une classification, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 17 (1990) no. 2, pp. 165-195 | Numdam | MR | Zbl

[77] Ben Wasserman Wonderful varieties of rank two, Transform. Groups, Volume 1 (1996) no. 4, pp. 375-403 | DOI | MR | Zbl

Cited by Sources: