Uniquely minimizing costs for the Kantorovitch problem
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 29 (2020) no. 3, pp. 507-563.

L’objet de cet article est de mettre en évidence des conditions suffisantes pertinentes et efficaces qui garantissent l’unicité des solutions aux problème de Kantorovitch et de démontrer la densité des coûts continus sur une variété pour lesquels les plans de transport optimaux sont uniques. Nous proposons également un critère pratique pour l’unicité des solutions au problème de Kantorovitch dans le cadre d’espaces polonais non-compacts.

The purpose of the present paper is to establish comprehensive and systematic sufficient conditions for uniqueness of the Kantorovitch optimizer, and to prove the density of continuous costs on arbitrary manifolds for which optimal plans are unique. We shall also establish a practical criterion for the uniqueness of the Kantorovitch optimizer in the non-compact setting on Polish spaces.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/afst.1638

Abbas Moameni 1 ; Ludovic Rifford 2

1 School of Mathematics and Statistics, Carleton University, Ottawa, Ontario (Canada)
2 Université Côte d’Azur, CNRS, Inria, Labo. J.-A. Dieudonné, UMR CNRS 7351, Parc Valrose, 06108 Nice Cedex 02 (France)
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AFST_2020_6_29_3_507_0,
     author = {Abbas Moameni and Ludovic Rifford},
     title = {Uniquely minimizing costs for the {Kantorovitch} problem},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {507--563},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 29},
     number = {3},
     year = {2020},
     doi = {10.5802/afst.1638},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1638/}
}
TY  - JOUR
AU  - Abbas Moameni
AU  - Ludovic Rifford
TI  - Uniquely minimizing costs for the Kantorovitch problem
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2020
SP  - 507
EP  - 563
VL  - 29
IS  - 3
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1638/
DO  - 10.5802/afst.1638
LA  - en
ID  - AFST_2020_6_29_3_507_0
ER  - 
%0 Journal Article
%A Abbas Moameni
%A Ludovic Rifford
%T Uniquely minimizing costs for the Kantorovitch problem
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2020
%P 507-563
%V 29
%N 3
%I Université Paul Sabatier, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1638/
%R 10.5802/afst.1638
%G en
%F AFST_2020_6_29_3_507_0
Abbas Moameni; Ludovic Rifford. Uniquely minimizing costs for the Kantorovitch problem. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 29 (2020) no. 3, pp. 507-563. doi : 10.5802/afst.1638. https://afst.centre-mersenne.org/articles/10.5802/afst.1638/

[1] Najma Ahmad; Hwa Kil Kim; Robert J. McCann Optimal transportation, topology and uniqueness, Bull. Math. Sci., Volume 1 (2011) no. 1, pp. 13-32 | DOI | MR | Zbl

[2] Mathias Beiglböck; Walter Schachermayer Duality for Borel measurable cost functions, Trans. Am. Math. Soc., Volume 363 (2011) no. 8, pp. 4203-4224 | DOI | MR | Zbl

[3] Viktor Beneš; Josef Štěpán The support of extremal probability measures with given marginals, Mathematical statistics and probability theory, Vol. A: Theoretical Aspects, Reidel Publishing Company, 1987, pp. 33-41 | DOI | Zbl

[4] Vladimir I. Bogachev Measure theory. Vol. I, II, Springer, 2007, Vol. I: xviii+500 pp., Vol. II: xiv+575 pages | Zbl

[5] Wilfrid Gangbo; Robert J. McCann The geometry of optimal transportation, Acta Math., Volume 177 (1996) no. 2, pp. 113-161 | DOI | MR | Zbl

[6] Kevin Hestir; Stanley C. Williams Supports of doubly stochastic measures, Bernoulli, Volume 1 (1995) no. 3, pp. 217-243 | DOI | MR | Zbl

[7] Shouchuan Hu; Nikolaos S. Papageorgiou Handbook of multivalued analysis. Vol. I, Mathematics and its Applications, 419, Kluwer Academic Publishers, 1997, xvi+964 pages (Theory) | MR | Zbl

[8] Anatole Katok; Boris Hasselblatt Introduction to the modern theory of dynamical systems, Encyclopedia of Mathematics and Its Applications, 54, Cambridge University Press, 1995, xviii+802 pages (With a supplementary chapter by Katok and Leonardo Mendoza) | MR | Zbl

[9] Robert J. McCann; Ludovic Rifford The intrinsic dynamics of optimal transport, J. Éc. Polytech., Math., Volume 3 (2016), pp. 67-98 | DOI | Numdam | MR | Zbl

[10] Abbas Moameni A characterization for solutions of the Monge-Kantorovich mass transport problem, Math. Ann., Volume 365 (2016) no. 3-4, pp. 1279-1304 | DOI | MR | Zbl

[11] Abbas Moameni Supports of extremal doubly stochastic measures, Can. Math. Bull., Volume 59 (2016) no. 2, pp. 381-391 | DOI | MR | Zbl

[12] Nikolaos S. Papageorgiou; Sophia Th. Kyritsi-Yiallourou Handbook of applied analysis, Advances in Mechanics and Mathematics, 19, Springer, 2009, xviii+793 pages | MR | Zbl

[13] Ludovic Rifford Sub-Riemannian geometry and optimal transport, SpringerBriefs in Mathematics, Springer, 2014, viii+140 pages | Zbl

[14] Shashi M. Srivastava A course on Borel sets, Graduate Texts in Mathematics, 180, Springer, 1998, xvi+261 pages | MR | Zbl

[15] Cédric Villani Optimal transport: Old and new, Grundlehren der Mathematischen Wissenschaften, 338, Springer, 2009 | Zbl

Cité par Sources :