L’objet de cet article est de mettre en évidence des conditions suffisantes pertinentes et efficaces qui garantissent l’unicité des solutions aux problème de Kantorovitch et de démontrer la densité des coûts continus sur une variété pour lesquels les plans de transport optimaux sont uniques. Nous proposons également un critère pratique pour l’unicité des solutions au problème de Kantorovitch dans le cadre d’espaces polonais non-compacts.
The purpose of the present paper is to establish comprehensive and systematic sufficient conditions for uniqueness of the Kantorovitch optimizer, and to prove the density of continuous costs on arbitrary manifolds for which optimal plans are unique. We shall also establish a practical criterion for the uniqueness of the Kantorovitch optimizer in the non-compact setting on Polish spaces.
Accepté le :
Publié le :
Abbas Moameni 1 ; Ludovic Rifford 2
@article{AFST_2020_6_29_3_507_0, author = {Abbas Moameni and Ludovic Rifford}, title = {Uniquely minimizing costs for the {Kantorovitch} problem}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {507--563}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 29}, number = {3}, year = {2020}, doi = {10.5802/afst.1638}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1638/} }
TY - JOUR AU - Abbas Moameni AU - Ludovic Rifford TI - Uniquely minimizing costs for the Kantorovitch problem JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2020 SP - 507 EP - 563 VL - 29 IS - 3 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1638/ DO - 10.5802/afst.1638 LA - en ID - AFST_2020_6_29_3_507_0 ER -
%0 Journal Article %A Abbas Moameni %A Ludovic Rifford %T Uniquely minimizing costs for the Kantorovitch problem %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2020 %P 507-563 %V 29 %N 3 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1638/ %R 10.5802/afst.1638 %G en %F AFST_2020_6_29_3_507_0
Abbas Moameni; Ludovic Rifford. Uniquely minimizing costs for the Kantorovitch problem. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 29 (2020) no. 3, pp. 507-563. doi : 10.5802/afst.1638. https://afst.centre-mersenne.org/articles/10.5802/afst.1638/
[1] Optimal transportation, topology and uniqueness, Bull. Math. Sci., Volume 1 (2011) no. 1, pp. 13-32 | DOI | MR | Zbl
[2] Duality for Borel measurable cost functions, Trans. Am. Math. Soc., Volume 363 (2011) no. 8, pp. 4203-4224 | DOI | MR | Zbl
[3] The support of extremal probability measures with given marginals, Mathematical statistics and probability theory, Vol. A: Theoretical Aspects, Reidel Publishing Company, 1987, pp. 33-41 | DOI | Zbl
[4] Measure theory. Vol. I, II, Springer, 2007, Vol. I: xviii+500 pp., Vol. II: xiv+575 pages | Zbl
[5] The geometry of optimal transportation, Acta Math., Volume 177 (1996) no. 2, pp. 113-161 | DOI | MR | Zbl
[6] Supports of doubly stochastic measures, Bernoulli, Volume 1 (1995) no. 3, pp. 217-243 | DOI | MR | Zbl
[7] Handbook of multivalued analysis. Vol. I, Mathematics and its Applications, 419, Kluwer Academic Publishers, 1997, xvi+964 pages (Theory) | MR | Zbl
[8] Introduction to the modern theory of dynamical systems, Encyclopedia of Mathematics and Its Applications, 54, Cambridge University Press, 1995, xviii+802 pages (With a supplementary chapter by Katok and Leonardo Mendoza) | MR | Zbl
[9] The intrinsic dynamics of optimal transport, J. Éc. Polytech., Math., Volume 3 (2016), pp. 67-98 | DOI | Numdam | MR | Zbl
[10] A characterization for solutions of the Monge-Kantorovich mass transport problem, Math. Ann., Volume 365 (2016) no. 3-4, pp. 1279-1304 | DOI | MR | Zbl
[11] Supports of extremal doubly stochastic measures, Can. Math. Bull., Volume 59 (2016) no. 2, pp. 381-391 | DOI | MR | Zbl
[12] Handbook of applied analysis, Advances in Mechanics and Mathematics, 19, Springer, 2009, xviii+793 pages | MR | Zbl
[13] Sub-Riemannian geometry and optimal transport, SpringerBriefs in Mathematics, Springer, 2014, viii+140 pages | Zbl
[14] A course on Borel sets, Graduate Texts in Mathematics, 180, Springer, 1998, xvi+261 pages | MR | Zbl
[15] Optimal transport: Old and new, Grundlehren der Mathematischen Wissenschaften, 338, Springer, 2009 | Zbl
Cité par Sources :