logo AFST

Fredholm-Regularity of Holomorphic Discs in Plane Bundles over Compact Surfaces
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 29 (2020) no. 3, pp. 565-576.

On etude l’espace des courbes holomorphes a bord dans une surface reelle situe dans une fibree vectoriel de rang 2 sur une variete reelle a dimension deux. On prouve que, si le fibree ambient admet une action transitive et holomorphe qui preserve la fibration, alors une section avec un et seulement un point complexe admet des deformation petits dans la norme C 2,α tel que toute disque holomorphe a bord dans la deformation soit Fredholm reguliere. On prouve aussi la Fredholm regularite dans le cas que le fibree ambient est Kaehlerien a signature (2,2), l’action de la groupe e holomorphe et symplectique, et la surface bordante est Lagrangienne avec un seul poit complexe.

We study the space of holomorphic discs with boundary on a surface in a real 2-dimensional vector bundle over a compact 2-manifold. We prove that, if the ambient 4-manifold admits a fibre-preserving transitive holomorphic action, then a section with a single complex point has C 2,α -close sections such that any (non-multiply covered) holomorphic disc with boundary in these sections are Fredholm regular. Fredholm regularity is also established when the complex surface is neutral Kähler, the action is both holomorphic and symplectic, and the section is Lagrangian with a single complex point.

Reçu le :
Accepté le :
Publié le :
DOI : https://doi.org/10.5802/afst.1639
@article{AFST_2020_6_29_3_565_0,
     author = {Brendan Guilfoyle and Wilhelm Klingenberg},
     title = {Fredholm-Regularity of Holomorphic Discs in Plane Bundles over Compact Surfaces},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {565--576},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 29},
     number = {3},
     year = {2020},
     doi = {10.5802/afst.1639},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1639/}
}
Brendan Guilfoyle; Wilhelm Klingenberg. Fredholm-Regularity of Holomorphic Discs in Plane Bundles over Compact Surfaces. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 29 (2020) no. 3, pp. 565-576. doi : 10.5802/afst.1639. https://afst.centre-mersenne.org/articles/10.5802/afst.1639/

[1] Holomorphic curves in symplectic geometry (Michèle Audin; Jacques Lafontaine, eds.), Progress in Mathematics, Volume 117, Birkhäuser, 1994, xii+328 pages | MR 1274923 | Zbl 0802.53001

[2] Kai Cieliebak; Klaus Mohnke Symplectic hypersurfaces and transversality in Gromov–Witten theory, J. Symplectic Geom., Volume 5 (2007) no. 3, pp. 281-356 | Article | MR 2399678 | Zbl 1149.53052

[3] Mikhael Gromov Pseudo holomorphic curves in symplectic manifolds, Invent. Math., Volume 82 (1985) no. 2, pp. 307-347 | Article | MR 809718

[4] Brendan Guilfoyle; Wilhelm Klingenberg An indefinite Kähler metric on the space of oriented lines, J. Lond. Math. Soc., Volume 72 (2005) no. 2, pp. 497-509 | Article | Zbl 1084.53017

[5] Brendan Guilfoyle; Wilhelm Klingenberg On Weingarten surfaces in Euclidean and Lorentzian 3-space, Differ. Geom. Appl., Volume 28 (2010) no. 4, pp. 454-468 | Article | MR 2651535 | Zbl 1205.53020

[6] Brendan Guilfoyle; Wilhelm Klingenberg Proof of the Carathéodory conjecture (2013) (https://arxiv.org/abs/0808.0851v3)

[7] Helmut Hofer; Véronique Lizan; Jean-Claude Sikorav On genericity for holomorphic curves in four-dimensional almost-complex manifolds, J. Geom. Anal., Volume 7 (1997) no. 1, pp. 149-159 | Article | MR 1630789 | Zbl 0911.53014

[8] Lars Hörmander The analysis of linear partial differential operators. III. Pseudo-differential operators, Classics in Mathematics, Springer, 2007, viii+525 pages (reprint of the 1994 edition) | Zbl 1115.35005

[9] Dusa McDuff; Dietmar Salamon J-holomorphic curves and symplectic topology, Colloquium Publications, Volume 52, American Mathematical Society, 2004, xii+669 pages | MR 2045629 | Zbl 1064.53051

[10] Yong-Geun Oh Fredholm theory of holomorphic discs under the perturbation of boundary conditions, Math. Z., Volume 222 (1996) no. 3, pp. 505-520 | MR 1400206 | Zbl 0863.53024

[11] Leonid V. Polterovich The Maslov class of the Lagrange surfaces and Gromov’s pseudo-holomorphic curves, Trans. Am. Math. Soc., Volume 325 (1991) no. 1, pp. 241-248 | MR 992608 | Zbl 0719.53016

[12] Steve Smale An infinite dimensional version of Sard’s theorem, Am. J. Math., Volume 87 (1965), pp. 861-866 | Article | MR 185604 | Zbl 0143.35301

[13] Alan Weinstein Lectures on symplectic manifolds, Regional Conference Series in Mathematics, Volume 29, American Mathematical Society, 1977, iv+48 pages (Expository lectures from the CBMS Regional Conference held at the University of North Carolina, March 8–12, 1976) | MR 464312 | Zbl 0406.53031