Fredholm-Regularity of Holomorphic Discs in Plane Bundles over Compact Surfaces
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 29 (2020) no. 3, pp. 565-576.

We study the space of holomorphic discs with boundary on a surface in a real 2-dimensional vector bundle over a compact 2-manifold. We prove that, if the ambient 4-manifold admits a fibre-preserving transitive holomorphic action, then a section with a single complex point has C 2,α -close sections such that any (non-multiply covered) holomorphic disc with boundary in these sections are Fredholm regular. Fredholm regularity is also established when the complex surface is neutral Kähler, the action is both holomorphic and symplectic, and the section is Lagrangian with a single complex point.

On etude l’espace des courbes holomorphes a bord dans une surface reelle situe dans une fibree vectoriel de rang 2 sur une variete reelle a dimension deux. On prouve que, si le fibree ambient admet une action transitive et holomorphe qui preserve la fibration, alors une section avec un et seulement un point complexe admet des deformation petits dans la norme C 2,α tel que toute disque holomorphe a bord dans la deformation soit Fredholm reguliere. On prouve aussi la Fredholm regularite dans le cas que le fibree ambient est Kaehlerien a signature (2,2), l’action de la groupe e holomorphe et symplectique, et la surface bordante est Lagrangienne avec un seul poit complexe.

Received:
Accepted:
Published online:
DOI: 10.5802/afst.1639

Brendan Guilfoyle 1; Wilhelm Klingenberg 2

1 Brendan Guilfoyle, School of Science, Technology, Engineering and Mathematics, Institute of Technology, Tralee, Clash, Tralee, Co. Kerry (Ireland)
2 Wilhelm Klingenberg, Department of Mathematical Sciences, University of Durham, Durham DH1 3LE (United Kingdom)
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AFST_2020_6_29_3_565_0,
     author = {Brendan Guilfoyle and Wilhelm Klingenberg},
     title = {Fredholm-Regularity of {Holomorphic} {Discs} in {Plane} {Bundles} over {Compact} {Surfaces}},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {565--576},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 29},
     number = {3},
     year = {2020},
     doi = {10.5802/afst.1639},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1639/}
}
TY  - JOUR
AU  - Brendan Guilfoyle
AU  - Wilhelm Klingenberg
TI  - Fredholm-Regularity of Holomorphic Discs in Plane Bundles over Compact Surfaces
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2020
SP  - 565
EP  - 576
VL  - 29
IS  - 3
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1639/
DO  - 10.5802/afst.1639
LA  - en
ID  - AFST_2020_6_29_3_565_0
ER  - 
%0 Journal Article
%A Brendan Guilfoyle
%A Wilhelm Klingenberg
%T Fredholm-Regularity of Holomorphic Discs in Plane Bundles over Compact Surfaces
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2020
%P 565-576
%V 29
%N 3
%I Université Paul Sabatier, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1639/
%R 10.5802/afst.1639
%G en
%F AFST_2020_6_29_3_565_0
Brendan Guilfoyle; Wilhelm Klingenberg. Fredholm-Regularity of Holomorphic Discs in Plane Bundles over Compact Surfaces. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 29 (2020) no. 3, pp. 565-576. doi : 10.5802/afst.1639. https://afst.centre-mersenne.org/articles/10.5802/afst.1639/

[1] Holomorphic curves in symplectic geometry (Michèle Audin; Jacques Lafontaine, eds.), Progress in Mathematics, 117, Birkhäuser, 1994, xii+328 pages | MR | Zbl

[2] Kai Cieliebak; Klaus Mohnke Symplectic hypersurfaces and transversality in Gromov–Witten theory, J. Symplectic Geom., Volume 5 (2007) no. 3, pp. 281-356 | DOI | MR | Zbl

[3] Mikhael Gromov Pseudo holomorphic curves in symplectic manifolds, Invent. Math., Volume 82 (1985) no. 2, pp. 307-347 | DOI | MR

[4] Brendan Guilfoyle; Wilhelm Klingenberg An indefinite Kähler metric on the space of oriented lines, J. Lond. Math. Soc., Volume 72 (2005) no. 2, pp. 497-509 | DOI | Zbl

[5] Brendan Guilfoyle; Wilhelm Klingenberg On Weingarten surfaces in Euclidean and Lorentzian 3-space, Differ. Geom. Appl., Volume 28 (2010) no. 4, pp. 454-468 | DOI | MR | Zbl

[6] Brendan Guilfoyle; Wilhelm Klingenberg Proof of the Carathéodory conjecture (2013) (https://arxiv.org/abs/0808.0851v3)

[7] Helmut Hofer; Véronique Lizan; Jean-Claude Sikorav On genericity for holomorphic curves in four-dimensional almost-complex manifolds, J. Geom. Anal., Volume 7 (1997) no. 1, pp. 149-159 | DOI | MR | Zbl

[8] Lars Hörmander The analysis of linear partial differential operators. III. Pseudo-differential operators, Classics in Mathematics, Springer, 2007, viii+525 pages (reprint of the 1994 edition) | Zbl

[9] Dusa McDuff; Dietmar Salamon J-holomorphic curves and symplectic topology, Colloquium Publications, 52, American Mathematical Society, 2004, xii+669 pages | MR | Zbl

[10] Yong-Geun Oh Fredholm theory of holomorphic discs under the perturbation of boundary conditions, Math. Z., Volume 222 (1996) no. 3, pp. 505-520 | MR | Zbl

[11] Leonid V. Polterovich The Maslov class of the Lagrange surfaces and Gromov’s pseudo-holomorphic curves, Trans. Am. Math. Soc., Volume 325 (1991) no. 1, pp. 241-248 | MR | Zbl

[12] Steve Smale An infinite dimensional version of Sard’s theorem, Am. J. Math., Volume 87 (1965), pp. 861-866 | DOI | MR | Zbl

[13] Alan Weinstein Lectures on symplectic manifolds, Regional Conference Series in Mathematics, 29, American Mathematical Society, 1977, iv+48 pages (Expository lectures from the CBMS Regional Conference held at the University of North Carolina, March 8–12, 1976) | MR | Zbl

Cited by Sources: