Dans cet article, nous développons une méthode de calcul de semigroupes d’évaluation pour les évaluations dominant l’anneau d’une singularité de quotient à deux dimensions. Supposons que est un corps algébriquement clos de caractéristique zéro, est un anneau polynomial sur et est une évaluation rationnelle non discrète de rang 1 du corps qui domine . Étant donné un groupe abelien fini agissant en diagonale sur et une suite génératrice de dans dont les membres sont des fonctions propres pour l’action de , nous calculons le semigroupe de valeurs d’éléments de l’anneau invariant . Nous déterminons en outre quand est un -module de type fini.
In this paper we develop a method for computing valuation semigroups for valuations dominating the ring of a two dimensional quotient singularity. Suppose that is an algebraically closed field of characteristic zero, is a polynomial ring over and is a rational rank 1 non discrete valuation of the field which dominates . Given a finite abelian group acting diagonally on , and a generating sequence of in whose members are eigenfunctions for the action of , we compute the semigroup of values of elements of . We further determine when is a finitely generated -module.
Accepté le :
Publié le :
Arpan Dutta 1
@article{AFST_2020_6_29_3_619_0, author = {Arpan Dutta}, title = {Generating sequences and semigroups of valuations on 2-dimensional normal local rings}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {619--647}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 29}, number = {3}, year = {2020}, doi = {10.5802/afst.1642}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1642/} }
TY - JOUR AU - Arpan Dutta TI - Generating sequences and semigroups of valuations on 2-dimensional normal local rings JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2020 SP - 619 EP - 647 VL - 29 IS - 3 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1642/ DO - 10.5802/afst.1642 LA - en ID - AFST_2020_6_29_3_619_0 ER -
%0 Journal Article %A Arpan Dutta %T Generating sequences and semigroups of valuations on 2-dimensional normal local rings %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2020 %P 619-647 %V 29 %N 3 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1642/ %R 10.5802/afst.1642 %G en %F AFST_2020_6_29_3_619_0
Arpan Dutta. Generating sequences and semigroups of valuations on 2-dimensional normal local rings. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 29 (2020) no. 3, pp. 619-647. doi : 10.5802/afst.1642. https://afst.centre-mersenne.org/articles/10.5802/afst.1642/
[1] On the valuations centered in a local domain, Am. J. Math., Volume 78 (1956), pp. 321-348 | DOI | MR | Zbl
[2] Polynomial invariants of finite groups, London Mathematical Society Lecture Note Series, 190, Cambridge University Press, 1993, x+118 pages | MR | Zbl
[3] Ramification of valuations and local rings in positive characteristic, Commun. Algebra, Volume 44 (2016) no. 7, pp. 2828-2866 | DOI | MR | Zbl
[4] The role of defect and splitting in finite generation of extensions of associated graded rings along a valuation, Algebra Number Theory, Volume 11 (2017) no. 6, pp. 1461-1488 | DOI | MR | Zbl
[5] Finite generation of extensions of associated graded rings along a valuation, J. Lond. Math. Soc., Volume 98 (2018) no. 1, pp. 177-203 | DOI | MR | Zbl
[6] Valuation semigroups of two-dimensional local rings, Proc. Lond. Math. Soc., Volume 108 (2014) no. 2, pp. 350-384 | DOI | MR | Zbl
[7] Constructing examples of semigroups of valuations, J. Pure Appl. Algebra, Volume 220 (2016) no. 12, pp. 3826-3860 | DOI | MR | Zbl
[8] Valuation theoretic and model theoretic aspects of local uniformization, Resolution of singularities (Obergurgl, 1997) (Progress in Mathematics), Volume 181, Birkhäuser, 2000, pp. 381-456 | DOI | MR | Zbl
[9] Algebra, Graduate Texts in Mathematics, 211, Springer, 2002, xvi+914 pages | Zbl
[10] A construction for a class of valuations of the field with large value group, J. Algebra, Volume 319 (2008) no. 7, pp. 2803-2829 | DOI | MR | Zbl
[11] Key polynomials and pseudo-convergent sequences, J. Algebra, Volume 495 (2018), pp. 199-219 | DOI | MR | Zbl
[12] A course in arithmetic, Graduate Texts in Mathematics, 7, Springer, 1973, viii+115 pages | MR | Zbl
[13] Valuations in function fields of surfaces, Am. J. Math., Volume 112 (1990) no. 1, pp. 107-156 | DOI | MR | Zbl
[14] Valuations, deformations, and toric geometry, Valuation theory and its applications, Vol. II (Saskatoon, SK, 1999) (Fields Institute Communications), Volume 33, American Mathematical Society, 2003, pp. 361-459 | MR | Zbl
[15] Overweight deformations of affine toric varieties and local uniformization, Valuation theory in interaction (EMS Series of Congress Reports), European Mathematical Society, 2014, pp. 474-565 | Zbl
[16] Commutative algebra. Vol. II, The University Series in Higher Mathematics, Princeton University Press, 1960, x+414 pages | Zbl
Cité par Sources :