Dans cet article, nous revisitons le schéma d’itération infinie des réductions de forme normale, introduit par les premier et deuxième auteurs (avec Z. Guo), dans la construction des solutions des EDP dispersives non linéaires. Notre objectif principal est de présenter une approche simplifiée à cette méthode. Plus précisément, nous étudions les réductions de forme normale dans un cadre abstrait et nous réduisons les estimations multilinéaires de degrés arbitraires aux applications successives des estimations trilinéaires fondamentales. Comme application, nous montrons que des équations dispersives non linéaires canoniques sont inconditionnellement bien-posées sur la droite réelle. En particulier, nous implémentons cette approche simplifiée à l’itération infinie des réductions de forme normale dans le contexte de l’équation de Schrödinger non linéaire cubique (NLS) et de l’équation de KdV modifiée (mKdV) sur la droite réelle et nous prouvons qu’elles sont inconditionnellement bien posées dans avec (i) dans le cas pour NLS cubique et (ii) dans le cas pour mKdV. Notre approche de forme normale nous permet également de construire solutions faibles au NLS cubique dans , , et solutions de distribution au mKdV dans (avec certaine forme d’unicité).
In this paper, we revisit the infinite iteration scheme of normal form reductions, introduced by the first and second authors (with Z. Guo), in constructing solutions to nonlinear dispersive PDEs. Our main goal is to present a simplified approach to this method. More precisely, we study normal form reductions in an abstract form and reduce multilinear estimates of arbitrarily high degrees to successive applications of basic trilinear estimates. As an application, we prove unconditional well-posedness of canonical nonlinear dispersive equations on the real line. In particular, we implement this simplified approach to an infinite iteration of normal form reductions in the context of the cubic nonlinear Schrödinger equation (NLS) and the modified KdV equation (mKdV) on the real line and prove unconditional well-posedness in with (i) for the cubic NLS and (ii) for the mKdV. Our normal form approach also allows us to construct weak solutions to the cubic NLS in , , and distributional solutions to the mKdV in (with some uniqueness statements).
Accepté le :
Publié le :
Mots clés : nonlinear Schrödinger equation, modified KdV equation, normal form reduction, unconditional well-posedness, unconditional uniqueness
Soonsik Kwon 1 ; Tadahiro Oh 2 ; Haewon Yoon 1
@article{AFST_2020_6_29_3_649_0, author = {Soonsik Kwon and Tadahiro Oh and Haewon Yoon}, title = {Normal form approach to unconditional well-posedness of nonlinear dispersive {PDEs} on the real line}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {649--720}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 29}, number = {3}, year = {2020}, doi = {10.5802/afst.1643}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1643/} }
TY - JOUR AU - Soonsik Kwon AU - Tadahiro Oh AU - Haewon Yoon TI - Normal form approach to unconditional well-posedness of nonlinear dispersive PDEs on the real line JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2020 SP - 649 EP - 720 VL - 29 IS - 3 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1643/ DO - 10.5802/afst.1643 LA - en ID - AFST_2020_6_29_3_649_0 ER -
%0 Journal Article %A Soonsik Kwon %A Tadahiro Oh %A Haewon Yoon %T Normal form approach to unconditional well-posedness of nonlinear dispersive PDEs on the real line %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2020 %P 649-720 %V 29 %N 3 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1643/ %R 10.5802/afst.1643 %G en %F AFST_2020_6_29_3_649_0
Soonsik Kwon; Tadahiro Oh; Haewon Yoon. Normal form approach to unconditional well-posedness of nonlinear dispersive PDEs on the real line. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 29 (2020) no. 3, pp. 649-720. doi : 10.5802/afst.1643. https://afst.centre-mersenne.org/articles/10.5802/afst.1643/
[1] Geometrical methods in the theory of ordinary differential equations, Grundlehren der Mathematischen Wissenschaften, 250, Springer, 1988, xiv+351 pages | MR
[2] On the regularization mechanism for the periodic Korteweg-de Vries equation, Commun. Pure Appl. Math., Volume 64 (2011) no. 5, pp. 591-648 | DOI | MR | Zbl
[3] Nonlinear Schrödinger equation, differentiation by parts and modulation spaces, J. Evol. Equ., Volume 19 (2019) no. 3, pp. 803-843 | DOI | Zbl
[4] Power series solution of a nonlinear Schrödinger equation, Mathematical aspects of nonlinear dispersive equations (Annals of Mathematics Studies), Volume 163, Princeton University Press, 2007, pp. 131-155 | Zbl
[5] Nonuniqueness of weak solutions of the nonlinear Schrödinger equation (2018) (https://arxiv.org/abs/math/0503366)
[6] Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations, Am. J. Math., Volume 125 (2003) no. 6, pp. 1235-1293 | DOI | MR | Zbl
[7] A priori bounds and weak solutions for the nonlinear Schrödinger equation in Sobolev spaces of negative order, J. Funct. Anal., Volume 254 (2008) no. 2, pp. 368-395 | DOI | Zbl
[8] Low regularity a priori bounds for the modified Korteweg–de Vries equation, Lib. Math. (N.S.), Volume 32 (2012) no. 1, pp. 51-75 | MR | Zbl
[9] Normal form approach to global well-posedness of the quadratic derivative nonlinear Schrödinger equation on the circle, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 34 (2017) no. 5, pp. 1273-1297 | DOI | Zbl
[10] Sharp global well-posedness for KdV and modified KdV on and , J. Am. Math. Soc., Volume 16 (2003) no. 3, pp. 705-749 | DOI | MR | Zbl
[11] Global smoothing for the periodic KdV evolution, Int. Math. Res. Not., Volume 20 (2013), pp. 4589-4614 | DOI | Zbl
[12] Normal form approach to the one-dimensional cubic nonlinear Schrödinger equation in Fourier-amalgam spaces (preprint)
[13] Rough solutions for the periodic Korteweg de Vries equation, Commun. Pure Appl. Anal., Volume 11 (2012) no. 2, pp. 709-733 | DOI | MR | Zbl
[14] Global well posedness of Korteweg de Vries equation in , J. Math. Pures Appl., Volume 91 (2009) no. 6, pp. 583-597 | MR | Zbl
[15] Poincaré Dulac normal form reduction for unconditional well-posedness of the periodic cubic NLS, Commun. Math. Phys., Volume 322 (2013) no. 1, pp. 19-48 | Zbl
[16] Nonsqueezing property of the coupled KdV type system without Miura transform (2015) (https://arxiv.org/abs/1509.08114)
[17] Global wellposedness of KdV in , Duke Math. J., Volume 135 (2006) no. 2, pp. 327-360 | MR
[18] On the Korteweg-de Vries equation, Manuscr. Math., Volume 28 (1979) no. 1-3, pp. 89-99 | DOI | Zbl
[19] On nonlinear Schrödinger equations. II. -solutions and unconditional well-posedness, J. Anal. Math., Volume 67 (1995), pp. 281-306 | DOI | Zbl
[20] Well posedness and scattering results for the generalized Korteweg de Vries equation via the contraction principle, Commun. Pure Appl. Math., Volume 46 (1993) no. 4, pp. 527-620 | DOI | MR | Zbl
[21] On the ill-posedness of some canonical dispersive equations, Duke Math. J., Volume 106 (2001) no. 3, pp. 617-633 | DOI | MR | Zbl
[22] KdV is wellposed in , Ann. Math., Volume 190 (2019) no. 1, pp. 249-305 | DOI | Zbl
[23] Low regularity conservation laws for integrable PDE, Geom. Funct. Anal., Volume 28 (2018) no. 4, pp. 1062-1090 | DOI | MR | Zbl
[24] Well posedness of the Cauchy problem for the Korteweg de Vries equation at the critical regularity, Differ. Integral Equ., Volume 22 (2009) no. 5-6, pp. 447-464 | MR | Zbl
[25] Unconditional uniqueness of solutions for nonlinear dispersive equations, 2015, pp. 78-82 (Proceedings of the 40th Sapporo Symposium on Partial Differential Equations, available at http://eprints3.math.sci.hokudai.ac.jp/2375/)
[26] private communication, 2016
[27] A priori bounds for the 1D cubic NLS in negative Sobolev spaces, Int. Math. Res. Not., Volume 16 (2007), rnm053, 36 pages | Zbl
[28] Energy and local energy bounds for the 1-d cubic NLS equation in , Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 29 (2012) no. 6, pp. 955-988 | DOI | Numdam | MR | Zbl
[29] Conserved energies for the cubic nonlinear Schrödinger equation in one dimension, Duke Math. J., Volume 167 (2018) no. 17, pp. 3207-3313 | DOI | Zbl
[30] On unconditional well posedness of modified KdV, Int. Math. Res. Not., Volume 15 (2012), pp. 3509-3534 | DOI | Zbl
[31] Korteweg de Vries equation and generalizations. I. A remarkable explicit nonlinear transformation, J. Math. Phys., Volume 9 (1968), pp. 1202-1204 | DOI | MR | Zbl
[32] Korteweg de Vries equation and generalizations. II. Existence of conservation laws and constants of motion, J. Math. Phys., Volume 9 (1968), pp. 1204-1209 | DOI | MR | Zbl
[33] Unconditional uniqueness for the modified Korteweg-de Vries equation on the line, Rev. Mat. Iberoam., Volume 34 (2018) no. 4, pp. 1563-1608 | DOI | MR | Zbl
[34] A remark on norm inflation with general initial data for the cubic nonlinear Schrödinger equations in negative Sobolev spaces, Funkc. Ekvacioj, Volume 60 (2017) no. 2, pp. 259-277 | Zbl
[35] An optimal regularity result on the quasi-invariant Gaussian measures for the cubic fourth order nonlinear Schrödinger equation, J. Éc. Polytech., Math., Volume 5 (2018), pp. 793-841 | Zbl
[36] Quasi-invariant Gaussian measures for the cubic fourth order nonlinear Schrödinger equation, Probab. Theory Relat. Fields, Volume 169 (2017) no. 3-4, pp. 1121-1168 | Zbl
[37] Normal form approach to the one dimensional periodic cubic nonlinear Schrödinger equation in almost critical Fourier–Lebesgue spaces (https://arxiv.org/abs/1811.04868, to appear in J. Anal. Math.)
[38] Global well posedness of the periodic cubic fourth order NLS in negative Sobolev spaces, Forum Math. Sigma, Volume 6 (2018), e5, 80 pages | MR | Zbl
[39] Global well-posedness of the one-dimensional cubic nonlinear Schrödinger equation in almost critical spaces, J. Differ. Equations, Volume 269 (2020) no. 1, pp. 612-640 | Zbl
[40] NLS in the modulation space , J. Fourier Anal. Appl., Volume 25 (2019) no. 4, pp. 1447-1486 | DOI | MR
[41] Multilinear weighted convolution of -functions, and applications to nonlinear dispersive equations, Am. J. Math., Volume 123 (2001) no. 5, pp. 839-908 | MR | Zbl
[42] -solutions for nonlinear Schrödinger equations and nonlinear groups, Funkc. Ekvacioj, Volume 30 (1987) no. 1, pp. 115-125 | Zbl
[43] The modified Korteweg–de Vries equation, J. Phys. Soc. Japan, Volume 34 (1973), pp. 1289-1296 | DOI | MR | Zbl
[44] Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Sov. Phys., JETP, Volume 34 (1972) no. 1, pp. 62-69 translated from Ž. Èksper. Teoret. Fiz. 61 (1971), no. 1, p. 118-134 | MR
Cité par Sources :