logo AFST

Non-explosion criteria for rough differential equations driven by unbounded vector fields
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 29 (2020) no. 3, pp. 721-759.

On traite de façon simple dans cette note du problème de la non explosion des solutions d’équations différentielles rugueuses conduites par des champs de vecteurs non bornés et un p-rough path faiblement géométrique, pour p quelconque.

We give in this note a simple treatment of the non-explosion problem for rough differential equations driven by unbounded vector fields and weak geometric rough paths of arbitrary roughness.

Reçu le :
Accepté le :
Publié le :
DOI : https://doi.org/10.5802/afst.1644
@article{AFST_2020_6_29_3_721_0,
     author = {Ismael Bailleul and Remi Catellier},
     title = {Non-explosion criteria for rough differential equations driven by unbounded vector fields},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {721--759},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 29},
     number = {3},
     year = {2020},
     doi = {10.5802/afst.1644},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1644/}
}
Ismael Bailleul; Remi Catellier. Non-explosion criteria for rough differential equations driven by unbounded vector fields. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 29 (2020) no. 3, pp. 721-759. doi : 10.5802/afst.1644. https://afst.centre-mersenne.org/articles/10.5802/afst.1644/

[1] Ismaël Bailleul A flows-based approach to rough differential equations (https://perso.univ-rennes1.fr/ismael.bailleul/files/M2Course.pdf)

[2] Ismaël Bailleul Flows driven by Banach space-valued rough paths, Séminaire de Probabilités XLVI (Lecture Notes in Mathematics) Volume 2123, Springer, 2014, pp. 195-205 | Article | MR 3330818 | Zbl 1390.60200

[3] Ismaël Bailleul Flows driven by rough paths, Rev. Mat. Iberoam., Volume 31 (2015) no. 3, pp. 901-934 | Article | MR 3420480 | Zbl 1352.34089

[4] Ismaël Bailleul; Rémi Catellier; François Delarue Solving mean field rough differential equations, Electron. J. Probab., Volume 25 (2020), 21, 51 pages | MR 4073682 | Zbl 07206358

[5] Fabrice Baudoin Diffusion processes and stochastic calculus, EMS Textbooks in Mathematics, European Mathematical Society, 2014, xii+276 pages | Zbl 1318.60001

[6] Youness Boutaib; Lajos Gergely Gyurkó; Terry J. Lyons; Danyu Yang Dimension-free Euler estimates of rough differential equations, Rev. Roum. Math. Pures Appl., Volume 59 (2014) no. 1, pp. 25-53 | MR 3296834 | Zbl 1399.60115

[7] Thomas Cass; Christian Litterer; Terry J. Lyons Integrability and tail estimates for Gaussian rough differential equations, Ann. Probab., Volume 41 (2013) no. 4, pp. 3026-3050 | Article | MR 3112937 | Zbl 1278.60091

[8] Thomas Cass; Marcel Ogrodnik Tail estimates for Markovian rough paths, Ann. Probab., Volume 45 (2017) no. 4, pp. 2477-2504 | Article | MR 3693967 | Zbl 06786086

[9] Thomas Cass; Martin P. Weidner Tree algebras over topological vector spaces in rough path theory (2017) (https://arxiv.org/abs/1604.07352v2)

[10] Kuo-Tsai Chen Integration of paths, geometric invariants and a generalized Baker–Hausdorff formula, Ann. Math., Volume 65 (1957), pp. 163-178 | Article | MR 85251 | Zbl 0077.25301

[11] Laure Coutin; Antoine Lejay Perturbed linear rough differential equations, Ann. Math. Blaise Pascal, Volume 21 (2014) no. 1, pp. 103-150 | Article | Numdam | MR 3248224 | Zbl 1322.60084

[12] Laure Coutin; Antoine Lejay Sensitivity of rough differential equations: an approach through the Omega lemma, J. Differ. Equations, Volume 264 (2018) no. 6, pp. 3899-3917 | Article | MR 3747431 | Zbl 1423.60088

[13] Laure Coutin; Zhongmin Qian Stochastic analysis, rough path analysis and fractional Brownian motions, Probab. Theory Relat. Fields, Volume 122 (2002) no. 1, pp. 108-140 | Article | MR 1883719 | Zbl 1047.60029

[14] Alexander M. Davie Differential equations driven by rough paths: an approach via discrete approximation, AMRX, Appl. Math. Res. Express, Volume 2 (2007), pp. 9-40

[15] Aurélien Deya; Massimiliano Gubinelli; Martina Hofmanová; Samy Tindel A priori estimates for rough PDEs with application to rough conservation laws (2016) (https://arxiv.org/abs/1604.00437) | Zbl 1411.60094

[16] Bruce Driver Global existence of geometric rough flows (2018) (https://arxiv.org/abs/1810.03708)

[17] Bruce Driver On truncated logarithms of flows on a Riemannian manifold (2018) (https://arxiv.org/abs/1810.02414)

[18] Peter K. Friz; Martin Hairer A course on rough paths. With an introduction to regularity structures, Universitext, Springer, 2014, xiv+251 pages | Zbl 1327.60013

[19] Peter K. Friz; Sebastian Riedel Integrability of (non-)linear rough differential equations and integrals, Stochastic Anal. Appl., Volume 31 (2013) no. 2, pp. 336-358 | Article | MR 3021493 | Zbl 1274.60173

[20] Peter K. Friz; Nicolas B. Victoir Multidimensional stochastic processes as rough paths, Cambridge Studies in Advanced Mathematics, Volume 120, Cambridge University Press, 2010 | MR 2604669 | Zbl 1193.60053

[21] Antoine Lejay On rough differential equations, Electron. J. Probab., Volume 14 (2009) no. 12, pp. 341-364 | Article | MR 2480544 | Zbl 1190.60044

[22] Antoine Lejay Global solutions to rough differential equations with unbounded vector fields, Séminaire de probabilités XLIV (Lecture Notes in Mathematics) Volume 2046, Springer, 2012, pp. 215-246 | MR 2953350

[23] Terry J. Lyons Differential equations driven by rough signals, Rev. Mat. Iberoam., Volume 14 (1998) no. 2, pp. 215-310 | Article | MR 1654527 | Zbl 0923.34056

[24] Terry J. Lyons; Michael Caruana; Thierry Lévy Differential equations driven by rough paths, Lecture Notes in Mathematics, Volume 1908, Springer, 2007, xviii+109 pages (Lectures from the 34th Summer School on Probability Theory held in Saint-Flour, July 6–24, 2004, With an introduction concerning the Summer School by Jean Picard) | MR 2314753 | Zbl 1176.60002

[25] Terry J. Lyons; Zhongmin Qian System control and rough paths, Oxford Mathematical Monographs, Clarendon Press, 2002 | Zbl 1029.93001

[26] Laurence C. Young An inequality of the Hölder type, connected with Stieltjes integration, Acta Math., Volume 67 (1936) no. 1, pp. 251-282 | Article | Zbl 0016.10404