We give in this note a simple treatment of the non-explosion problem for rough differential equations driven by unbounded vector fields and weak geometric rough paths of arbitrary roughness.
On traite de façon simple dans cette note du problème de la non explosion des solutions d’équations différentielles rugueuses conduites par des champs de vecteurs non bornés et un -rough path faiblement géométrique, pour quelconque.
Accepted:
Published online:
DOI: 10.5802/afst.1644
Ismael Bailleul 1; Remi Catellier 2
@article{AFST_2020_6_29_3_721_0, author = {Ismael Bailleul and Remi Catellier}, title = {Non-explosion criteria for rough differential equations driven by unbounded vector fields}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {721--759}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 29}, number = {3}, year = {2020}, doi = {10.5802/afst.1644}, zbl = {07206358}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1644/} }
TY - JOUR AU - Ismael Bailleul AU - Remi Catellier TI - Non-explosion criteria for rough differential equations driven by unbounded vector fields JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2020 SP - 721 EP - 759 VL - 29 IS - 3 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1644/ DO - 10.5802/afst.1644 LA - en ID - AFST_2020_6_29_3_721_0 ER -
%0 Journal Article %A Ismael Bailleul %A Remi Catellier %T Non-explosion criteria for rough differential equations driven by unbounded vector fields %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2020 %P 721-759 %V 29 %N 3 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1644/ %R 10.5802/afst.1644 %G en %F AFST_2020_6_29_3_721_0
Ismael Bailleul; Remi Catellier. Non-explosion criteria for rough differential equations driven by unbounded vector fields. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 29 (2020) no. 3, pp. 721-759. doi : 10.5802/afst.1644. https://afst.centre-mersenne.org/articles/10.5802/afst.1644/
[1] A flows-based approach to rough differential equations (https://perso.univ-rennes1.fr/ismael.bailleul/files/M2Course.pdf)
[2] Flows driven by Banach space-valued rough paths, Séminaire de Probabilités XLVI (Lecture Notes in Mathematics), Volume 2123, Springer, 2014, pp. 195-205 | DOI | MR | Zbl
[3] Flows driven by rough paths, Rev. Mat. Iberoam., Volume 31 (2015) no. 3, pp. 901-934 | DOI | MR | Zbl
[4] Solving mean field rough differential equations, Electron. J. Probab., Volume 25 (2020), 21, 51 pages | MR | Zbl
[5] Diffusion processes and stochastic calculus, EMS Textbooks in Mathematics, European Mathematical Society, 2014, xii+276 pages | Zbl
[6] Dimension-free Euler estimates of rough differential equations, Rev. Roum. Math. Pures Appl., Volume 59 (2014) no. 1, pp. 25-53 | MR | Zbl
[7] Integrability and tail estimates for Gaussian rough differential equations, Ann. Probab., Volume 41 (2013) no. 4, pp. 3026-3050 | DOI | MR | Zbl
[8] Tail estimates for Markovian rough paths, Ann. Probab., Volume 45 (2017) no. 4, pp. 2477-2504 | DOI | MR | Zbl
[9] Tree algebras over topological vector spaces in rough path theory (2017) (https://arxiv.org/abs/1604.07352v2)
[10] Integration of paths, geometric invariants and a generalized Baker–Hausdorff formula, Ann. Math., Volume 65 (1957), pp. 163-178 | DOI | MR | Zbl
[11] Perturbed linear rough differential equations, Ann. Math. Blaise Pascal, Volume 21 (2014) no. 1, pp. 103-150 | DOI | Numdam | MR | Zbl
[12] Sensitivity of rough differential equations: an approach through the Omega lemma, J. Differ. Equations, Volume 264 (2018) no. 6, pp. 3899-3917 | DOI | MR | Zbl
[13] Stochastic analysis, rough path analysis and fractional Brownian motions, Probab. Theory Relat. Fields, Volume 122 (2002) no. 1, pp. 108-140 | DOI | MR | Zbl
[14] Differential equations driven by rough paths: an approach via discrete approximation, AMRX, Appl. Math. Res. Express, Volume 2 (2007), pp. 9-40
[15] A priori estimates for rough PDEs with application to rough conservation laws (2016) (https://arxiv.org/abs/1604.00437) | Zbl
[16] Global existence of geometric rough flows (2018) (https://arxiv.org/abs/1810.03708)
[17] On truncated logarithms of flows on a Riemannian manifold (2018) (https://arxiv.org/abs/1810.02414)
[18] A course on rough paths. With an introduction to regularity structures, Universitext, Springer, 2014, xiv+251 pages | Zbl
[19] Integrability of (non-)linear rough differential equations and integrals, Stochastic Anal. Appl., Volume 31 (2013) no. 2, pp. 336-358 | DOI | MR | Zbl
[20] Multidimensional stochastic processes as rough paths, Cambridge Studies in Advanced Mathematics, 120, Cambridge University Press, 2010 | MR | Zbl
[21] On rough differential equations, Electron. J. Probab., Volume 14 (2009) no. 12, pp. 341-364 | DOI | MR | Zbl
[22] Global solutions to rough differential equations with unbounded vector fields, Séminaire de probabilités XLIV (Lecture Notes in Mathematics), Volume 2046, Springer, 2012, pp. 215-246 | DOI | MR | Zbl
[23] Differential equations driven by rough signals, Rev. Mat. Iberoam., Volume 14 (1998) no. 2, pp. 215-310 | DOI | MR | Zbl
[24] Differential equations driven by rough paths, Lecture Notes in Mathematics, 1908, Springer, 2007, xviii+109 pages (Lectures from the 34th Summer School on Probability Theory held in Saint-Flour, July 6–24, 2004, With an introduction concerning the Summer School by Jean Picard) | MR | Zbl
[25] System control and rough paths, Oxford Mathematical Monographs, Clarendon Press, 2002 | Zbl
[26] An inequality of the Hölder type, connected with Stieltjes integration, Acta Math., Volume 67 (1936) no. 1, pp. 251-282 | DOI | Zbl
Cited by Sources: