On traite de façon simple dans cette note du problème de la non explosion des solutions d’équations différentielles rugueuses conduites par des champs de vecteurs non bornés et un -rough path faiblement géométrique, pour quelconque.
We give in this note a simple treatment of the non-explosion problem for rough differential equations driven by unbounded vector fields and weak geometric rough paths of arbitrary roughness.
Accepté le :
Publié le :
DOI : 10.5802/afst.1644
Ismael Bailleul 1 ; Remi Catellier 2
@article{AFST_2020_6_29_3_721_0, author = {Ismael Bailleul and Remi Catellier}, title = {Non-explosion criteria for rough differential equations driven by unbounded vector fields}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {721--759}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 29}, number = {3}, year = {2020}, doi = {10.5802/afst.1644}, zbl = {07206358}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1644/} }
TY - JOUR AU - Ismael Bailleul AU - Remi Catellier TI - Non-explosion criteria for rough differential equations driven by unbounded vector fields JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2020 SP - 721 EP - 759 VL - 29 IS - 3 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1644/ DO - 10.5802/afst.1644 LA - en ID - AFST_2020_6_29_3_721_0 ER -
%0 Journal Article %A Ismael Bailleul %A Remi Catellier %T Non-explosion criteria for rough differential equations driven by unbounded vector fields %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2020 %P 721-759 %V 29 %N 3 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1644/ %R 10.5802/afst.1644 %G en %F AFST_2020_6_29_3_721_0
Ismael Bailleul; Remi Catellier. Non-explosion criteria for rough differential equations driven by unbounded vector fields. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 29 (2020) no. 3, pp. 721-759. doi : 10.5802/afst.1644. https://afst.centre-mersenne.org/articles/10.5802/afst.1644/
[1] A flows-based approach to rough differential equations (https://perso.univ-rennes1.fr/ismael.bailleul/files/M2Course.pdf)
[2] Flows driven by Banach space-valued rough paths, Séminaire de Probabilités XLVI (Lecture Notes in Mathematics), Volume 2123, Springer, 2014, pp. 195-205 | DOI | MR | Zbl
[3] Flows driven by rough paths, Rev. Mat. Iberoam., Volume 31 (2015) no. 3, pp. 901-934 | DOI | MR | Zbl
[4] Solving mean field rough differential equations, Electron. J. Probab., Volume 25 (2020), 21, 51 pages | MR | Zbl
[5] Diffusion processes and stochastic calculus, EMS Textbooks in Mathematics, European Mathematical Society, 2014, xii+276 pages | Zbl
[6] Dimension-free Euler estimates of rough differential equations, Rev. Roum. Math. Pures Appl., Volume 59 (2014) no. 1, pp. 25-53 | MR | Zbl
[7] Integrability and tail estimates for Gaussian rough differential equations, Ann. Probab., Volume 41 (2013) no. 4, pp. 3026-3050 | DOI | MR | Zbl
[8] Tail estimates for Markovian rough paths, Ann. Probab., Volume 45 (2017) no. 4, pp. 2477-2504 | DOI | MR | Zbl
[9] Tree algebras over topological vector spaces in rough path theory (2017) (https://arxiv.org/abs/1604.07352v2)
[10] Integration of paths, geometric invariants and a generalized Baker–Hausdorff formula, Ann. Math., Volume 65 (1957), pp. 163-178 | DOI | MR | Zbl
[11] Perturbed linear rough differential equations, Ann. Math. Blaise Pascal, Volume 21 (2014) no. 1, pp. 103-150 | DOI | Numdam | MR | Zbl
[12] Sensitivity of rough differential equations: an approach through the Omega lemma, J. Differ. Equations, Volume 264 (2018) no. 6, pp. 3899-3917 | DOI | MR | Zbl
[13] Stochastic analysis, rough path analysis and fractional Brownian motions, Probab. Theory Relat. Fields, Volume 122 (2002) no. 1, pp. 108-140 | DOI | MR | Zbl
[14] Differential equations driven by rough paths: an approach via discrete approximation, AMRX, Appl. Math. Res. Express, Volume 2 (2007), pp. 9-40
[15] A priori estimates for rough PDEs with application to rough conservation laws (2016) (https://arxiv.org/abs/1604.00437) | Zbl
[16] Global existence of geometric rough flows (2018) (https://arxiv.org/abs/1810.03708)
[17] On truncated logarithms of flows on a Riemannian manifold (2018) (https://arxiv.org/abs/1810.02414)
[18] A course on rough paths. With an introduction to regularity structures, Universitext, Springer, 2014, xiv+251 pages | Zbl
[19] Integrability of (non-)linear rough differential equations and integrals, Stochastic Anal. Appl., Volume 31 (2013) no. 2, pp. 336-358 | DOI | MR | Zbl
[20] Multidimensional stochastic processes as rough paths, Cambridge Studies in Advanced Mathematics, 120, Cambridge University Press, 2010 | MR | Zbl
[21] On rough differential equations, Electron. J. Probab., Volume 14 (2009) no. 12, pp. 341-364 | DOI | MR | Zbl
[22] Global solutions to rough differential equations with unbounded vector fields, Séminaire de probabilités XLIV (Lecture Notes in Mathematics), Volume 2046, Springer, 2012, pp. 215-246 | DOI | MR | Zbl
[23] Differential equations driven by rough signals, Rev. Mat. Iberoam., Volume 14 (1998) no. 2, pp. 215-310 | DOI | MR | Zbl
[24] Differential equations driven by rough paths, Lecture Notes in Mathematics, 1908, Springer, 2007, xviii+109 pages (Lectures from the 34th Summer School on Probability Theory held in Saint-Flour, July 6–24, 2004, With an introduction concerning the Summer School by Jean Picard) | MR | Zbl
[25] System control and rough paths, Oxford Mathematical Monographs, Clarendon Press, 2002 | Zbl
[26] An inequality of the Hölder type, connected with Stieltjes integration, Acta Math., Volume 67 (1936) no. 1, pp. 251-282 | DOI | Zbl
Cité par Sources :