The lexicographic degree of the first two-bridge knots
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 29 (2020) no. 4, pp. 761-793.

Nous étudions les degrés des représentations polynomiales des nœuds. Nous donnons en particulier le degré lexicographique des nœuds à deux ponts à moins de 11 croisements. Nous estimons d’abord le degré total d’une paramétrisation polynomiale de degré lexicographique. Celà nous permet de nous ramener à un problème d’étude de courbes algébriques planes trigonales, et en particulier d’utiliser la méthode des tresses développée par Orevkov.

We study the degree of polynomial representations of knots. We give the lexicographic degree of all two-bridge knots with 11 or fewer crossings. First, we estimate the total degree of a lexicographic parametrisation of such a knot. This allows us to transform this problem into a study of real algebraic trigonal plane curves, and in particular to use the braid theoretical method developed by Orevkov.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/afst.1645
Classification : 14H50, 57M25, 11A55, 14P99
Mots clés : Real pseudoholomorphic curves, polynomial knots, two-bridge knots, Chebyshev curves

Erwan Brugallé 1 ; Pierre-Vincent Koseleff 2 ; Daniel Pecker 3

1 Université de Nantes, Laboratoire de Mathématiques Jean Leray (CNRS LMJL UMR 6629) (France)
2 Sorbonne Université (UPMC–Paris 6), Institut de Mathématiques de Jussieu (CNRS IMJ-PRG UMR 7586) & Inria-Paris (France)
3 Sorbonne Université (UPMC–Paris 6), Institut de Mathématiques de Jussieu (CNRS IMJ-PRG UMR 7586) (France)
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AFST_2020_6_29_4_761_0,
     author = {Erwan Brugall\'e and Pierre-Vincent Koseleff and Daniel Pecker},
     title = {The lexicographic degree of the first two-bridge knots},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {761--793},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 29},
     number = {4},
     year = {2020},
     doi = {10.5802/afst.1645},
     zbl = {1344.14022},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1645/}
}
TY  - JOUR
AU  - Erwan Brugallé
AU  - Pierre-Vincent Koseleff
AU  - Daniel Pecker
TI  - The lexicographic degree of the first two-bridge knots
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2020
SP  - 761
EP  - 793
VL  - 29
IS  - 4
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1645/
DO  - 10.5802/afst.1645
LA  - en
ID  - AFST_2020_6_29_4_761_0
ER  - 
%0 Journal Article
%A Erwan Brugallé
%A Pierre-Vincent Koseleff
%A Daniel Pecker
%T The lexicographic degree of the first two-bridge knots
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2020
%P 761-793
%V 29
%N 4
%I Université Paul Sabatier, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1645/
%R 10.5802/afst.1645
%G en
%F AFST_2020_6_29_4_761_0
Erwan Brugallé; Pierre-Vincent Koseleff; Daniel Pecker. The lexicographic degree of the first two-bridge knots. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 29 (2020) no. 4, pp. 761-793. doi : 10.5802/afst.1645. https://afst.centre-mersenne.org/articles/10.5802/afst.1645/

[1] Erwan Brugallé; Pierre-Vincent Koseleff; Daniel Pecker On the lexicographic degree of two-bridge knots, J. Knot Theory Ramifications, Volume 25 (2016) no. 7, 1650044, 17 pages | MR | Zbl

[2] Erwan Brugallé; Pierre-Vincent Koseleff; Daniel Pecker Untangling trigonal diagrams, J. Knot Theory Ramifications, Volume 25 (2016) no. 7, 1650043, 10 pages | MR | Zbl

[3] John H. Conway An enumeration of knots and links, and some of their algebraic properties, Computational Problems in Abstract Algebra (1970), pp. 329-358 | Zbl

[4] Peter R. Cromwell Knots and links, Cambridge University Press, 2004 | MR | Zbl

[5] Pierre-Vincent Koseleff; Daniel Pecker A polynomial parametrization of torus knots, Appl. Algebra Eng. Commun. Comput., Volume 20 (2009) no. 5-6, pp. 361-377 | DOI | MR | Zbl

[6] Kunio Murasugi Knot Theory and its Applications, Birkhäuser, 1996 | Zbl

[7] Stepan Yu. Orevkov Link theory and oval arrangements of real algebraic curves, Topology, Volume 38 (1999) no. 4, pp. 779-810 | DOI | MR | Zbl

[8] Stepan Yu. Orevkov Riemann existence theorem and construction of real algebraic curves, Ann. Fac. Sci. Toulouse, Math., Volume 12 (2003) no. 4, pp. 517-531 | DOI | MR | Numdam | Zbl

[9] Stepan Yu. Orevkov Quasipositivity problem for 3-braids, Turk. J. Math., Volume 28 (2004) no. 1, pp. 89-93 (Proceedings of 10th Gokova Geometry-Topology Conference 2004) | MR | Zbl

[10] Stepan Yu. Orevkov Algorithmic recognition of quasipositive braids of algebraic length two, J. Algebra, Volume 423 (2015), pp. 1080-1108 | DOI | MR | Zbl

[11] Anant R. Shastri Polynomial representations of knots, Tôhoku Math. J., Volume 44 (1992) no. 1, pp. 11-17 | DOI | MR | Zbl

[12] Viktor A. Vassiliev Cohomology of knot spaces, Theory of singularities and its applications (Advances in Soviet Mathematics), Volume 1, American Mathematical Society, 1990, pp. 23-69 | DOI | MR | Zbl

Cité par Sources :