In this article, we derive off-diagonal estimates of the Bergman kernel associated to the tensor-powers of the cotangent bundle defined on a hyperbolic Riemann surface of finite volume, when the distance between the points is less than injectivity radius. We then use these estimates to derive estimates of the Bergman kernel along the diagonal.
Dans cet article, nous dérivons des estimations non-diagonales du noyau de Bergman associé aux puissances tensorielles du faisceau cotangent défini sur une surface de Riemann hyperbolique de volume fini, lorsque la distance entre les points est inférieure au rayon d’injectivité. Nous utilisons ensuite ces estimations pour dériver des estimations du noyau de Bergman le long de la diagonale.
Accepted:
Published online:
Keywords: Bergman kernels
Anilatmaja Aryasomayajula 1; Priyanka Majumder 1
@article{AFST_2020_6_29_4_795_0, author = {Anilatmaja Aryasomayajula and Priyanka Majumder}, title = {Estimates of the {Bergman} kernel on a hyperbolic {Riemann} surface of finite {volume-II}}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {795--804}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 29}, number = {4}, year = {2020}, doi = {10.5802/afst.1646}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1646/} }
TY - JOUR AU - Anilatmaja Aryasomayajula AU - Priyanka Majumder TI - Estimates of the Bergman kernel on a hyperbolic Riemann surface of finite volume-II JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2020 SP - 795 EP - 804 VL - 29 IS - 4 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1646/ DO - 10.5802/afst.1646 LA - en ID - AFST_2020_6_29_4_795_0 ER -
%0 Journal Article %A Anilatmaja Aryasomayajula %A Priyanka Majumder %T Estimates of the Bergman kernel on a hyperbolic Riemann surface of finite volume-II %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2020 %P 795-804 %V 29 %N 4 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1646/ %R 10.5802/afst.1646 %G en %F AFST_2020_6_29_4_795_0
Anilatmaja Aryasomayajula; Priyanka Majumder. Estimates of the Bergman kernel on a hyperbolic Riemann surface of finite volume-II. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 29 (2020) no. 4, pp. 795-804. doi : 10.5802/afst.1646. https://afst.centre-mersenne.org/articles/10.5802/afst.1646/
[1] Off-diagonal estimates of the Bergman kernel on hyperbolic Riemann surfaces of finite volume, Proc. Am. Math. Soc., Volume 146 (2018) no. 9, pp. 4009-4020 | DOI | MR | Zbl
[2] Bergman kernels on punctured Riemann surfaces, C. R. Math. Acad. Sci. Paris, Volume 354 (2016) no. 10, pp. 1018-1022 | DOI | MR | Zbl
[3] Bergman kernels on punctured Riemann surfaces, C. R. Math. Acad. Sci. Paris, Volume 354 (2016) no. 10, pp. 1018-1022 | DOI | MR | Zbl
[4] Uniform sup-norm bounds on average for cusp forms of higher weights, Arbeitstagung Bonn 2013 (Progress in Mathematics), Volume 319, Birkhäuser/Springer, 2016, pp. 127-154 | DOI | MR | Zbl
[5] Convergence of the heat kernel and the resolvent kernel on degenerating hyperbolic Riemann surfaces of finite volume, Quaest. Math., Volume 18 (1995) no. 4, pp. 345-363 | DOI | MR | Zbl
[6] Exponential estimate for the asymptotics of Bergman kernels, Math. Ann., Volume 362 (2015) no. 3-4, pp. 1327-1347 | MR | Zbl
Cited by Sources: